

Vibration of a Squeezed Plate

This model illustrates how to perform eigenfrequency and frequency response analyses for a contact problem.

A circular plate is squeezed between two thicker plates. The peak of a frequency response analysis is compared with the eigenfrequency and also with the natural frequency of an ideal case, that is, an annular plate fixed at the inner ring boundary.

The modeling sequence involving all necessary study steps and model parameter updates is automated using a model method.

Model Definition

The analysis is done using an assumption of 2D axisymmetry. The geometry is shown in Figure 1. A circular plate made of steel is constrained by means of mechanical contact with a holder modeled as two clamping plates.

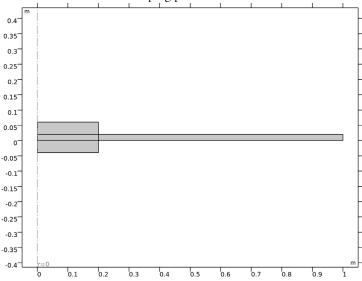


Figure 1: Geometry consisting of a large thin plate clamped between two thicker plates.

For the plate holder radius ri = 0.2 m, the first natural frequency and the corresponding eigenmode are shown in Figure 2. The eigenfrequency is complex valued because of the damping properties added to model. The real part of the frequency is approximately 24.3 Hz. For an equivalent annular plate fixed at the inner ring boundary, the first natural frequency is around 25.2 Hz.

Eigenfrequency=24.302+0.24264i Hz Surface: Displacement magnitude (m)

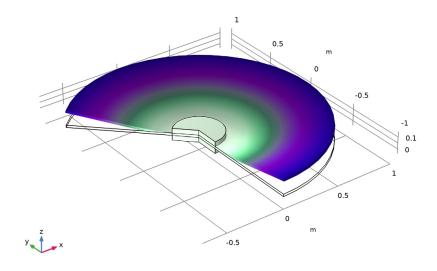


Figure 2: The first eigenmode for a plate clamped using contact. The plate holder radius is 0.2 m.

The frequency response for a frequency range containing the first eigenmode is shown in Figure 3.

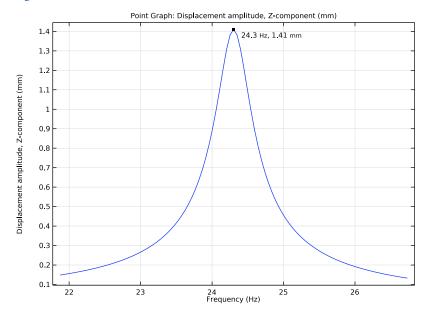


Figure 3: Vertical displacement of the plate outer edge.

The maximum value occurs at the frequency value close to the eigenfrequency. The corresponding deformation of the plate is shown in Figure 4.

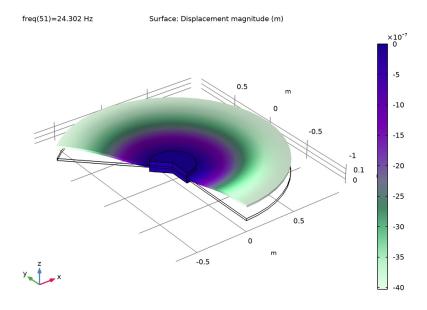


Figure 4: Response of the plate to a boundary load excitation at a frequency close to the first eigenfrequency.

The variation in the first natural frequency with respect to a change in the plate holder radius is shown in Figure 4. The results computed by means of the frequency domain analysis present a very good estimate of the eigenfrequency.

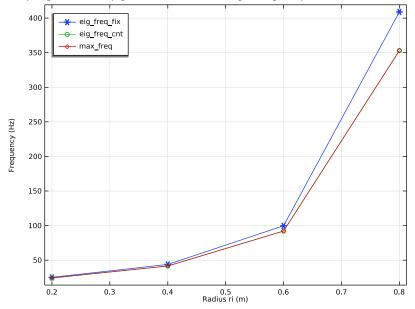


Figure 5: The first natural frequency as a function of the plate holder radius. The curves represent the results from the eigenfrequency analysis (annular constrained and squeezed plate) and from the maximum frequency response, respectively.

Notes About the COMSOL Implementation

The contact state is modeled via a stationary study step using the augmented Lagrangian method. The results are then used as a linearization point for both the eigenfrequency and the frequency domain study steps. A parametric sweep including all study steps is automated using a model method. The method also performs all necessary evaluations and model parameter updates between the study steps. You enter the Java® code for the method using the method editor, which is only available in the Windows® version of the COMSOL Desktop®.

Application Library path: Structural Mechanics Module/ Contact and Friction/squeezed plate response

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 2D Axisymmetric.
- 2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
- 3 Click Add.
- 4 Click Study.
- 5 In the Select Study tree, select General Studies>Eigenfrequency.
- 6 Click **Done**.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
F	1[kN/m^2]	1000 N/m²	Applied harmonic load
ro	1[m]	l m	Plate radius
ri	0.2[m]	0.2 m	Plate holder radius
th	0.02[m]	0.02 m	Plate thickness
freq_ref	24.302	24.302	Reference frequency
disp_max	0.0014454	0.0014454	Peak displacement

GEOMETRY I

Rectangle I (rI)

- I In the **Geometry** toolbar, click **Rectangle**.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type r0.
- 4 In the Height text field, type th.

- 5 In the Width text field, type ro.
- **6** Click to expand the **Layers** section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	ri

- 7 Select the Layers to the left check box.
- 8 Clear the Layers on bottom check box.
- 9 Click | Build Selected.

Rectangle 2 (r2)

- I In the Geometry toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type ri.
- 4 In the Height text field, type 2*th.
- **5** Locate the **Position** section. In the **z** text field, type th.

Rectangle 3 (r3)

- I Right-click Rectangle 2 (r2) and choose Duplicate.
- 2 In the Settings window for Rectangle, locate the Position section.
- 3 In the z text field, type -2*th.

Form Union (fin)

- I In the Model Builder window, under Component I (compl)>Geometry I click Form Union (fin).
- 2 In the Settings window for Form Union/Assembly, locate the Form Union/Assembly section.
- 3 From the Action list, choose Form an assembly.
- 4 Clear the **Create pairs** check box.
- 5 In the Geometry toolbar, click **Build All**.

DEFINITIONS

Contact Pair I (\$1)

- I In the **Definitions** toolbar, click **Pairs** and choose **Contact Pair**.
- 2 Select Boundaries 3 and 13 only.
- 3 In the Settings window for Pair, locate the Destination Boundaries section.
- **4** Click to select the **Activate Selection** toggle button.

- **5** Select Boundaries 6 and 7 only.
- 6 Locate the Advanced section. From the Mapping method list, choose Initial configuration.

ADD MATERIAL

- I In the Home toolbar, click **‡ Add Material** to open the **Add Material** window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Structural steel.
- 4 Right-click and choose Add to Component I (compl).
- 5 In the Home toolbar, click 👯 Add Material to close the Add Material window.

SOLID MECHANICS (SOLID)

Contact 1

Use the augmented Lagrangian method to increase the accuracy of the contact pressure.

- I In the Model Builder window, under Component I (compl)>Solid Mechanics (solid) click Contact I
- 2 In the Settings window for Contact, locate the Contact Method section.
- 3 From the list, choose Augmented Lagrangian.
- 4 Locate the Contact Pressure Penalty Factor section. From the Tuned for list, choose Speed.

Roller I

- I In the Physics toolbar, click Boundaries and choose Roller.
- 2 Select Boundary 2 only.

Prescribed Displacement I

- I In the Physics toolbar, click Boundaries and choose Prescribed Displacement.
- 2 Select Boundary 14 only.
- 3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
- 4 Select the Prescribed in z direction check box.
- **5** In the u_{0z} text field, type -1[um].

Linear Elastic Material I

In the Model Builder window, click Linear Elastic Material 1.

Damping I

- I In the Physics toolbar, click Attributes and choose Damping.
- 2 In the Settings window for Damping, locate the Damping Settings section.
- 3 From the Damping type list, choose Isotropic loss factor.

MATERIALS

Structural steel (mat I)

- I In the Model Builder window, under Component I (compl)>Materials click Structural steel (matl).
- 2 In the Settings window for Material, locate the Material Contents section.
- **3** In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Isotropic structural loss factor	eta_s	0.02	I	Basic

SOLID MECHANICS (SOLID)

Fixed Constraint I

- I In the Physics toolbar, click **Domains** and choose **Fixed Constraint**.
- **2** Select Domains 1, 2, and 4 only.

This constraint makes the geometry equivalent to an annular plate fixed at the inner ring boundary.

MESH I

Mapped I

In the Mesh toolbar, click Mapped.

Distribution 1

- I Right-click Mapped I and choose Distribution.
- **2** Select Boundary 5 only.
- 3 In the Settings window for Distribution, locate the Distribution section.
- 4 In the Number of elements text field, type 4.

Distribution 2

- I In the Model Builder window, right-click Mapped I and choose Distribution.
- 2 Select Boundaries 2, 6, 13, and 14 only.

- 3 In the Settings window for Distribution, locate the Distribution section.
- 4 In the Number of elements text field, type 24.

Size

- I In the Model Builder window, under Component I (compl)>Mesh I click Size.
- 2 In the Settings window for Size, locate the Element Size section.
- 3 From the Predefined list, choose Extremely fine.
- 4 Click Build All.

STUDY I

Step 1: Eigenfrequency

- I In the Model Builder window, under Study I click Step I: Eigenfrequency.
- 2 In the Settings window for Eigenfrequency, locate the Study Settings section.
- **3** Select the **Desired number of eigenfrequencies** check box. In the associated text field, type 1.
- 4 In the Home toolbar, click **Compute**.

RESULTS

Mode Shape (solid)

Add a numerical evaluation to extract the natural frequency.

Global Evaluation 1

- I In the Results toolbar, click (8.5) Global Evaluation.
- 2 In the Settings window for Global Evaluation, locate the Expressions section.
- **3** In the table, enter the following settings:

Expression	Unit	Description
freq	1/s	Frequency

4 Click **= Evaluate**.

The value of the real part should be close to 25.2 Hz.

Next, compute the first natural frequency for a plate clamped by using contact.

ADD STUDY

- I In the Home toolbar, click Add Study to open the Add Study window.
- 2 Go to the Add Study window.

- 3 Find the Studies subsection. In the Select Study tree, select Preset Studies for Selected Physics Interfaces>Eigenfrequency, Prestressed.
- 4 Right-click and choose Add Study.
- 5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 2

Step 1: Stationary

- I In the Settings window for Stationary, locate the Physics and Variables Selection section.
- 2 Select the Modify model configuration for study step check box.
- 3 In the tree, select Component I (compl)>Solid Mechanics (solid), Controls spatial frame> Fixed Constraint 1.
- 4 Click Disable.

Step 2: Eigenfrequency

- I In the Model Builder window, click Step 2: Eigenfrequency.
- 2 In the Settings window for Eigenfrequency, locate the Study Settings section.
- 3 Select the Desired number of eigenfrequencies check box. In the associated text field, type 1.
- 4 Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.
- 5 In the tree, select Component I (compl)>Solid Mechanics (solid), Controls spatial frame> Fixed Constraint 1.
- 6 Click Disable.
- 7 In the Home toolbar, click **Compute**.

RESULTS

Global Evaluation 2

- I In the Model Builder window, under Results>Derived Values right-click Global Evaluation I and choose Duplicate.
- 2 In the Settings window for Global Evaluation, locate the Data section.
- 3 From the Dataset list, choose Study 2/Solution 2 (sol2).
- 4 Click ▼ next to **= Evaluate**, then choose **New Table**.

TABLE

I Go to the Table window.

The value of the real part should be close to 24.3 Hz. Compare the result with the first natural frequency of the equivalent annular plate.

Next, prepare to perform a frequency response analysis.

SOLID MECHANICS (SOLID)

Boundary Load 1

- I In the Physics toolbar, click Boundaries and choose Boundary Load.
- 2 Select Boundary 11 only.
- 3 In the Settings window for Boundary Load, locate the Force section.
- **4** Specify the \mathbf{F}_{A} vector as

0	r
-F	z

5 Right-click Boundary Load I and choose Harmonic Perturbation.

ADD STUDY

- I In the Home toolbar, click Add Study to open the Add Study window.
- 2 Go to the Add Study window.
- 3 Find the Studies subsection. In the Select Study tree, select Empty Study.
- 4 Right-click and choose Add Study.
- 5 In the Home toolbar, click Add Study to close the Add Study window.

STUDY 3

Frequency Domain Perturbation

I In the Study toolbar, click Study Steps and choose Frequency Domain> Frequency Domain Perturbation.

Compute the solution for a frequency range that contains the reference frequency.

- 2 In the Settings window for Frequency Domain Perturbation, locate the Study Settings section.
- 3 In the Frequencies text field, type freq ref*range(0.9,2e-3,1.1).
- 4 Locate the Physics and Variables Selection section. Select the Modify model configuration for study step check box.

- 5 In the tree, select Component I (compl)>Solid Mechanics (solid), Controls spatial frame> Fixed Constraint I.
- 6 Click O Disable.

Use the same prestress static solution as for the Eigenfrequency study step.

- 7 Click to expand the Values of Dependent Variables section. Find the Values of variables not solved for subsection. From the Settings list, choose User controlled.
- 8 From the Method list, choose Solution.
- 9 From the Study list, choose Study 2, Eigenfrequency.
- 10 From the Solution list, choose Solution 2 (sol2).

Solution 4 (sol4)

In the Study toolbar, click Show Default Solver.

Step 1: Frequency Domain Perturbation

- I In the Model Builder window, expand the Solution 4 (sol4) node, then click Study 3> Step 1: Frequency Domain Perturbation.
- 2 In the Settings window for Frequency Domain Perturbation, locate the Study Settings section.
- 3 Find the Values of linearization point subsection. From the Settings list, choose User controlled.
- 4 From the Method list, choose Solution.
- 5 From the Study list, choose Study 2, Eigenfrequency.
- 6 From the Solution list, choose Solution 2 (sol2).
- 7 From the Use list, choose Solution Store I (sol3).
- 8 In the Study toolbar, click **Compute**.

RESULTS

Surface 1

- I In the Model Builder window, expand the Results>Stress (solid) node, then click Surface I.
- 2 In the Settings window for Surface, locate the Expression section.
- 3 In the Expression text field, type solid.mises.
- 4 Locate the Coloring and Style section. Click Change Color Table.
- 5 In the Color Table dialog box, select Rainbow>Rainbow in the tree.
- 6 Click OK.

Displacement, 3D (solid)

- I In the Model Builder window, under Results click Stress, 3D (solid).
- 2 In the Settings window for 3D Plot Group, locate the Data section.
- 3 From the Parameter value (freq (Hz)) list, choose 24.302.
- 4 In the Label text field, type Displacement, 3D (solid).

Surface I

- I In the Model Builder window, expand the Displacement, 3D (solid) node, then click Surface I.
- 2 In the Settings window for Surface, locate the Expression section.
- **3** In the **Expression** text field, type solid.disp.
- 4 Locate the Coloring and Style section. Click Change Color Table.
- 5 In the Color Table dialog box, select Aurora Aurora Borealis in the tree.
- 6 Click OK.
- 7 In the Displacement, 3D (solid) toolbar, click **Plot**.
- 8 In the Home toolbar, click Add Predefined Plot.

ADD PREDEFINED PLOT

- I Go to the Add Predefined Plot window.
- 2 In the tree, select Study 2/Solution Store I (sol3)>Solid Mechanics>Contact Forces (solid).
- **3** Click **Add Plot** in the window toolbar.
- 4 In the Home toolbar, click Add Predefined Plot.

RESULTS

Contact Forces (solid)

- I In the Model Builder window, under Results click Contact Forces (solid).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Dataset list, choose Study 2/Solution Store I (sol3).
- 4 In the Contact Forces (solid) toolbar, click Plot.

ID Plot Group 8

- I In the Home toolbar, click Add Plot Group and choose ID Plot Group.
- 2 In the Settings window for ID Plot Group, locate the Data section.
- 3 From the Dataset list, choose Study 3/Solution 4 (sol4).
- 4 Locate the Plot Settings section.

5 Select the x-axis label check box. In the associated text field, type Frequency (Hz).

Point Graph 1

- I Right-click ID Plot Group 8 and choose Point Graph.
- **2** Select Point 10 only.
- 3 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)> Solid Mechanics>Displacement>Displacement amplitude (material and geometry frames) m>solid.uAmpZ - Displacement amplitude, Z-component.
- 4 Locate the y-Axis Data section. From the Unit list, choose mm.

Graph Marker I

- I Right-click Point Graph I and choose Graph Marker.
- 2 In the Settings window for Graph Marker, locate the Display section.
- 3 From the Display list, choose Max.
- 4 Locate the Text Format section. Select the Show x-coordinate check box.
- **5** Select the **Include unit** check box.
- 6 In the Display precision text field, type 3.
- 7 In the ID Plot Group 8 toolbar, click Plot.

In the following steps, you will evaluate the peak frequency which you can see in the newly generated plot.

Point Evaluation 1

- I In the Results toolbar, click $\frac{8.85}{6.12}$ Point Evaluation.
- 2 In the Settings window for Point Evaluation, locate the Data section.
- 3 From the Dataset list, choose Study 3/Solution 4 (sol4).
- **4** Select Point 10 only.
- **5** Locate the **Expressions** section. In the table, enter the following settings:

Expression	Unit	Description
solid.uAmpZ	m	Displacement amplitude, Z component

- 6 Locate the Data Series Operation section. From the Transformation list, choose Maximum.
- 7 Click **= Evaluate**.

Point Evaluation 2

I In the Results toolbar, click $\frac{8.85}{6.12}$ Point Evaluation.

- 2 In the Settings window for Point Evaluation, locate the Data section.
- 3 From the Dataset list, choose Study 3/Solution 4 (sol4).
- **4** Select Point 10 only.
- **5** Locate the **Expressions** section. In the table, enter the following settings:

Expression	Unit	Description
<pre>freq*(solid.uAmpZ>=disp_max- eps)</pre>	Hz	Computed peak frequency

- 6 Locate the Data Series Operation section. From the Transformation list, choose Maximum.
- 7 Click **= Evaluate**.

TABLE

Go to the **Table** window, compare the computed value with the real part of the eigenfrequency.

In the remaining part of the modeling, you will create a **Model Method**. For each value of the plate holder radius, ri, the method computes the first eigenfrequency and then estimates the peak frequency using the frequency sweep around the eigenfrequency.

The method editor is only available in the Windows® version of the COMSOL Desktop.

NEW METHOD

- I In the **Developer** toolbar, click New Method.
- 2 In the New Method dialog box, type runModel in the Name text field.
- 3 Click OK.

APPLICATION BUILDER

runModel

- I In the Application Builder window, under Methods click runModel.
- **2** Copy the following code into the **runModel** window:

```
// Clean up and recreate the tables in the model
model.result().table("tbl1").clearTableData();
model.result().table("tbl2").clearTableData();
model.result().table("tbl3").clearTableData();
model.result().table("tbl4").clearTableData();
model.result().numerical("gev1").set("table", "tbl1");
model.result().numerical("gev2").set("table", "tbl2");
model.result().numerical("pev1").set("table", "tbl3");
model.result().numerical("pev2").set("table", "tbl4");
// You will decrease the plate holder radius, ri, in several steps
```

```
double rimax = 0.8;
double rimin = 0.2:
int n steps = 4;
double dri = (rimax-rimin)/(n_steps-1);
double ri = rimax;
// Data structure for the tables
double[][] data eig freq fix = new double[n steps][2];
double[][] data eig freq cnt = new double[n steps][2];
double[][] data max freq = new double[n steps][2];
for (int n = 0; n < n_steps; n++) {
data eig freq fix[n][0] = ri;
data eig freq cnt[n][0] = ri;
data max freq[n][0] = ri;
model.param().set("ri", ri);
// Compute the eigenfrequency
model.study("std1").run();
double eig freq fix = model.result().numerical("gev1").getReal()[0][0];
data eig freq fix[n][1] = eig freq fix;
model.study("std2").run();
double eig freq cnt = model.result().numerical("gev2").getReal()[0][0];
data eig freq cnt[n][1] = eig freq cnt;
model.param().set("freq_ref", eig_freq_cnt);
 // Compute the frequency response
model.study("std3").run();
double disp max = model.result().numerical("pev1").getReal()[0][0];
model.result().numerical("pev1").setResult();
model.param().set("disp_max", disp_max);
model.sol("sol4").updateSolution();
data max freq[n][1] = model.result().numerical("pev2").getReal()[0][0];
model.result("pg5").run();
ri = ri-dri;
// Populate the tables
model.result().table("tbl1").setColumnHeaders(new String[]{"ri",
"eig freq fix"});
model.result().table("tbl1").setTableData(data eig freq fix);
model.result().table("tbl2").setColumnHeaders(new String[]{"ri",
"eig_freq_cnt"});
model.result().table("tbl2").setTableData(data eig freq cnt);
model.result().table("tb14").setColumnHeaders(new String[]{"ri", "max freq"});
model.result().table("tbl4").setTableData(data max freq);
```

METHODS

In the **Home** toolbar, click **Model Builder** to switch to the main desktop.

GLOBAL DEFINITIONS

Click Method Call and choose runModel.

RunModel I

Click **Run Method** and choose **runModel**.

Finally, plot the computed frequencies.

TABLE

- I Go to the **Table** window.
- 2 Click **Table Graph** in the window toolbar.

RESULTS

ID Plot Group 9

- I In the Model Builder window, expand the Results>Tables node, then click Results> ID Plot Group 9.
- 2 In the Settings window for ID Plot Group, locate the Plot Settings section.
- 3 Select the x-axis label check box. In the associated text field, type Radius ri (m).
- 4 Select the y-axis label check box. In the associated text field, type Frequency (Hz).
- 5 Locate the Legend section. From the Position list, choose Upper left.

Table Graph 1

- I In the Model Builder window, click Table Graph I.
- 2 In the Settings window for Table Graph, locate the Coloring and Style section.
- 3 Find the Line markers subsection. From the Marker list, choose Cycle.
- 4 Click to expand the **Legends** section. Select the **Show legends** check box.

Table Graph 2

- I Right-click Results>ID Plot Group 9>Table Graph I and choose Duplicate.
- 2 In the Settings window for Table Graph, locate the Data section.
- 3 From the Table list, choose Table 2.

Table Graph 3

- I Right-click **Table Graph 2** and choose **Duplicate**.
- 2 In the Settings window for Table Graph, locate the Data section.
- **3** From the **Table** list, choose **Table 4**.
- 4 In the ID Plot Group 9 toolbar, click Plot.