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Introduction

Buckling is a phenomenon that can cause sudden failure of a structure.

A linear buckling analysis predicts the critical buckling load. Such an analysis, however, 
does not give any information about what happens at loads higher than the critical load. 
Tracing the solution after the critical load is called a postbuckling analysis.

A linear buckling analysis also often overpredicts the load-carrying capacity of the 
structure.

In order to accurately determine the critical buckling load or predict the postbuckling 
behavior, you can use the nonlinear solver and ramp up the applied load to compute the 
structure deformation. The buckling load can then be based on when a certain, not 
acceptable, deformation is reached.

Once the critical buckling load has been reached it can happen that the structure 
undergoes a sudden large deformation into a new stable configuration. This is known as a 
snap-through phenomenon. A snap-through process cannot be simulated using prescribed 
load in a standard nonlinear static solver because the problem becomes numerically 
singular. Physically speaking, it is a highly transient problem as the structure “jumps” from 
one state to another. For simple cases with a single point load, it is often possible to replace 
the point load with a prescribed displacement and then measure the reaction force instead.

For more general problems the post-buckling solution must however be tracked using 
more sophisticated methods, as shown in this example.
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Figure 1 shows the variation of load versus the displacement for such a difficult case. It 
illustrates the possible computational problem by using either a load control (path A) or a 
displacement control (path B).

Figure 1: Load versus displacement in snap-through buckling

The shell structure in this example has a behavior similar to this.

Model Definition

The model studied here is a benchmark for a hinged cylindrical panel subjected to a point 
load at its center; see Ref. 1.

• The radius of the cylinder is R = 2.54 m and all edges have a length of 2L = 0.508 m. 
The angular span of the panel is thus 0.2 radians. The panel thickness is th = 6.35 mm.

• The straight edges are hinged.

• In the study the variation of the panel center vertical displacement with respect to the 
change of the applied load is of interest.
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Due to the double symmetry, only one quarter of the geometry is modeled as shown in 
Figure 2. The blue lines show the symmetry edge conditions, while the red line shows the 
location of the hinged edge condition.

Figure 2: Problem description.

In general, you should be careful with using symmetry in buckling problems, because 
nonsymmetric solutions may exist.
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Results

In Figure 3 you can see the applied load as a function of the panel center displacement. 
The figure shows clearly a non-unique solution for a given applied load (between -400 N 
to 600 N) or a given displacement (between 14.4 mm and 17 mm).

Figure 3: Applied load versus panel center displacement.

As shown in Table 1, the results agree well with the target data from Ref. 1.

TABLE 1:  COMPARISON BETWEEN TARGET AND COMPUTED DATA.

Applied Load (N) Displacement 
target (mm)

Displacement 
computed (mm)

Difference (%)

155.1 1.846 1.818 1.52

574.2 11.904 12.05 1.23

485.1 15.501 15.56 0.38

24.9 17.008 17.028 0.12

-300.3 14.520 14.537 0.12

-381.3 16.961 16.77 1.13

-1.8 24.824 24.81 0.06

1469.4 33.388 33.34 0.14
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Notes About the COMSOL Implementation

The main feature of this model is that a limit point instability occurs at the buckling load. 
Neither a load control, nor a point displacement control, would be able to track the jump 
between the stable solution paths (see Figure 1). To solve this type of problem it is 
important to find a proper parameter that increases monotonically.

In this example, a good such parameter is the average of the displacement in the direction 
of the applied force. You use a nonlocal average coupling to measure the displacement and 
then add a global equation to compute the appropriate point load for each prescribed 
parameter value.

There is no general way to determine which controlling parameter to use, so it is necessary 
to use some physical insight.

Reference

1. K.Y. Sze, X.H. Liua, and S.H. Lob, “Popular Benchmark Problems for Geometric 
Nonlinear Analysis of Shells,” Finite Element in Analysis and Design, vol. 40, issue 11, 
pp. 1551–1569, 2004.

Application Library path: Structural_Mechanics_Module/
Verification_Examples/postbuckling_shell

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

M O D E L  W I Z A R D

1 In the Model Wizard window, click 3D.

2 In the Select Physics tree, select Structural Mechanics>Shell (shell).

3 Click Add.

4 Click Study.

5 In the Select Study tree, select General Studies>Stationary.
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6 Click Done.

G L O B A L  D E F I N I T I O N S

Parameters 1
1 In the Model Builder window, under Global Definitions click Parameters 1.

2 In the Settings window for Parameters, locate the Parameters section.

3 In the table, enter the following settings:

G E O M E T R Y  1

Work Plane 1 (wp1)
1 In the Geometry toolbar, click Work Plane.

2 In the Settings window for Work Plane, locate the Plane Definition section.

3 From the Plane list, choose xz-plane.

4 Click Show Work Plane.

Work Plane 1 (wp1)>Line Segment 1 (ls1)
1 In the Work Plane toolbar, click More Primitives and choose Line Segment.

2 In the Settings window for Line Segment, locate the Starting Point section.

3 From the Specify list, choose Coordinates.

4 Locate the Endpoint section. From the Specify list, choose Coordinates.

5 Locate the Starting Point section. In the yw text field, type R.

6 Locate the Endpoint section. In the xw text field, type L and yw to R.

7 Click Build Selected.

Revolve 1 (rev1)
1 In the Model Builder window, right-click Geometry 1 and choose Revolve.

Name Expression Value Description

R 2540[mm] 2.54 m Panel radius

L 254[mm] 0.254 m Panel length

thic 6.35[mm] 0.00635 m Panel thickness

theta 0.1[rad] 0.1 rad Panel section angle

E0 3.103[GPa] 3.103E9 Pa Young's modulus

nu0 0.3 0.3 Poisson's ratio

disp 0 0 Displacement parameter
7 |  P O S T B U C K L I N G  A N A L Y S I S  O F  A  H I N G E D  C Y L I N D R I C A L  S H E L L



2 In the Settings window for Revolve, locate the Revolution Angles section.

3 Click the Angles button.

4 In the End angle text field, type theta.

5 Locate the Revolution Axis section. Find the Direction of revolution axis subsection. In 
the xw text field, type 1.

6 In the yw text field, type 0.

7 Click Build Selected.

D E F I N I T I O N S

Click the Zoom Extents button in the Graphics toolbar.

Average 1 (aveop1)
1 In the Definitions toolbar, click Nonlocal Couplings and choose Average.

2 In the Settings window for Average, locate the Source Selection section.

3 From the Geometric entity level list, choose Boundary.

4 Select Boundary 1 only.

Integration 1 (intop1)
1 In the Definitions toolbar, click Nonlocal Couplings and choose Integration.

2 In the Settings window for Integration, locate the Source Selection section.

3 From the Geometric entity level list, choose Point.

4 Select Point 4 only.

Variables 1
1 In the Definitions toolbar, click Local Variables.

2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

S H E L L  ( S H E L L )

Thickness and Offset 1
1 In the Model Builder window, under Component 1 (comp1)>Shell (shell) click 

Thickness and Offset 1.

2 In the Settings window for Thickness and Offset, locate the Thickness and Offset section.

Name Expression Unit

w_center -intop1(w) m
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3 In the d0 text field, type thic.

Symmetry 1
1 In the Physics toolbar, click Edges and choose Symmetry.

2 Select Edge 3 only.

Symmetry 2
1 In the Physics toolbar, click Edges and choose Symmetry.

2 Select Edge 4 only.

3 In the Settings window for Symmetry, locate the Coordinate System Selection section.

4 From the Coordinate system list, choose Global coordinate system.

5 Locate the Symmetry section. From the Symmetry plane normal list, choose First axis.

Pinned 1
1 In the Physics toolbar, click Edges and choose Pinned.

2 Select Edge 2 only.

Point Load 1
1 In the Physics toolbar, click Points and choose Point Load.

2 Select Point 4 only.

Apply 1/4th of the total load because of the double symmetry used in this model.

3 In the Settings window for Point Load, locate the Force section.

4 Specify the FP vector as

5 Click the Show More Options button in the Model Builder toolbar.

6 In the Show More Options dialog box, in the tree, select the check box for the node 
Physics>Equation-Based Contributions.

7 Click OK.

Global Equations 1
1 In the Physics toolbar, click Global and choose Global Equations.

2 In the Settings window for Global Equations, locate the Global Equations section.

0 x

0 y

-P/4 z
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3 In the table, enter the following settings:

4 Locate the Units section. Click Select Dependent Variable Quantity.

5 In the Physical Quantity dialog box, type force in the text field.

6 Click Filter.

7 In the tree, select General>Force (N).

8 Click OK.

9 In the Settings window for Global Equations, locate the Units section.

10 Click Select Source Term Quantity.

11 In the Physical Quantity dialog box, type displacement in the text field.

12 Click Filter.

13 In the tree, select General>Displacement (m).

14 Click OK.

M A T E R I A L S

Material 1 (mat1)
1 In the Model Builder window, under Component 1 (comp1) right-click Materials and 

choose Blank Material.

2 In the Settings window for Material, locate the Material Contents section.

3 In the table, enter the following settings:

M E S H  1

Mapped 1
1 In the Mesh toolbar, click Boundary and choose Mapped.

Name f(u,ut,utt,t) (1) Initial value 
(u_0) (1)

Initial value 
(u_t0) (1/s)

Description

P aveop1(-w)-disp 0 0 Force at shell 
center

Property Variable Value Unit Property group

Young’s modulus E E0 Pa Young’s modulus and 
Poisson’s ratio

Poisson’s ratio nu nu0 1 Young’s modulus and 
Poisson’s ratio

Density rho 0 kg/m³ Basic
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2 Select Boundary 1 only.

Distribution 1
1 Right-click Mapped 1 and choose Distribution.

2 Select Edges 1 and 2 only.

3 In the Settings window for Distribution, locate the Distribution section.

4 In the Number of elements text field, type 10.

5 Click Build Selected.

S T U D Y  1

Step 1: Stationary
Set up an auxiliary continuation sweep for the disp parameter.

1 In the Model Builder window, under Study 1 click Step 1: Stationary.

2 In the Settings window for Stationary, click to expand the Study Extensions section.

3 Select the Auxiliary sweep check box.

4 Click Add.

5 In the table, enter the following settings:

6 Locate the Study Settings section. Select the Include geometric nonlinearity check box.

Sometimes it is not straightforward to guess the maximum value of the parameter used. 
You can then instead set a stop condition for the parametric solver based on something 
that is known.

Solution 1 (sol1)
1 In the Study toolbar, click Show Default Solver.

2 In the Model Builder window, expand the Solution 1 (sol1) node.

3 In the Model Builder window, expand the Study 1>Solver Configurations>

Solution 1 (sol1)>Stationary Solver 1 node.

4 Right-click Study 1>Solver Configurations>Solution 1 (sol1)>Stationary Solver 1>

Parametric 1 and choose Stop Condition.

5 In the Settings window for Stop Condition, locate the Stop Expressions section.

6 Click Add.

Parameter name Parameter value list

disp (Displacement parameter) range(0,2e-4,1)
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7 In the table, enter the following settings:

Specify that the solution is to be stored just before the stop condition is reached.

8 Locate the Output at Stop section. From the Add solution list, choose Step before stop.

9 Clear the Add warning check box.

10 In the Model Builder window, under Study 1>Solver Configurations>Solution 1 (sol1) click 
Stationary Solver 1.

11 In the Settings window for Stationary Solver, click to expand the Output section.

12 Clear the Reaction forces check box.

13 Click Compute.

R E S U L T S

Force at Shell Center
1 In the Home toolbar, click Add Plot Group and choose 1D Plot Group.

2 In the Settings window for 1D Plot Group, type Force at Shell Center in the Label 
text field.

Point Graph 1
1 Right-click Force at Shell Center and choose Point Graph.

2 Select Point 4 only.

3 In the Settings window for Point Graph, click Replace Expression in the upper-right 
corner of the y-Axis Data section. From the menu, choose Component 1 (comp1)>Shell>

P - Force at shell center - N.

4 Locate the x-Axis Data section. From the Parameter list, choose Expression.

5 In the Expression text field, type w_center.

6 In the Force at Shell Center toolbar, click Plot.

Stop expression Stop if Active Description

comp1.w_center>0.035 True (>=1) √ Stop expression 1
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