

Optimization of an Extruded MBB Beam

Introduction

Topology and shape optimization can be used to find and improve the design of products, but sometimes manufacturing constraints dictate that the design most be invariant in one of the dimensions, that is, an extruded geometry is desired. If 3-dimensional effects play little role, a 2D optimization can be used. Otherwise, one has to perform a 3D simulation and restrict the optimization to preserve the extruded property of the geometry.

This model is inspired by Topology Optimization of an MBB Beam, but the geometry is forced to be invariant in the z direction. The result is transferred to a second component in which shape optimization is performed, while still preserving the invariance in the z direction.

Model Definition

The model uses the *Density Model* feature to impose a minimum length scale on the filtered material volume factor. This is only defined on a symmetry plane, but it can be accessed as a z-invariant field in the volume by defining a General Extrusion operator.

The shape optimization uses equation-based modeling to define control variables and Helmholtz filters on the edges that form the intersection of a symmetry plane and the optimized boundaries. A second **General Extrusion** operator is used to transfer the variables of the Helmholtz filters from the edges to the optimized boundaries. Dirichlet boundary conditions are imposed on the Helmholtz filter to restrict the shape optimization to the box of the topology optimization.

Results and Discussion

The result of the topology optimization is shown in Figure 1. The model accounts for outof-plane displacements, but the design is identical to the 2D result in the model Topology Optimization of an MBB Beam.

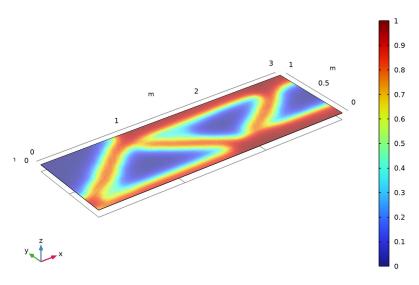


Figure 1: The filtered material volume factor is plotted on the z symmetry plane associated with the Density Model. An extrusion operator is used to transfer the variable to the volume.

The second General Extrusion will be more robust if it is used on an extruded design. There are several ways to achieve this, but in this model we will combine a Filter dataset, a Mesh part and a geometry Import feature to transfer a 2D version of the design. This is then extruded as shown in Figure 2.

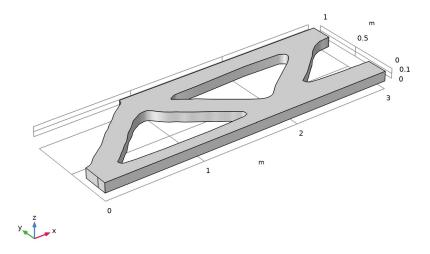


Figure 2: 'The topology optimized design has been transferred to a second component using an extrusion operator and a filter dataset pointing to a cut plane dataset.

Finally, the result of the shape optimization is shown in Figure 3 as the initial volume in gray on top of the optimized volume in red (transparency is enabled). The 90-degree angle near the top boundary is removed, because it is an artifact of the Helmholtz filter and thus not optimal (similar to Shape Optimization of an MBB Beam).

Volume: Displacement magnitude (m) Volume: Displacement magnitude (m)

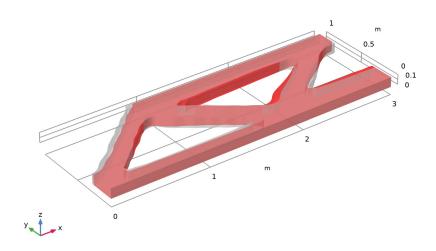


Figure 3: The plot shows the initial and optimized geometries in gray and red, respectively.

Notes About the COMSOL Implementation

This model combines the Optimization, Solid Mechanics and Deforming Geometry interfaces. The model uses a **Filter** dataset to transfer the geometry between components. An alternatively method is to export the edges as a a text file with a section-wise format and import them as an interpolation curve. The interpolation curve has a parameter that can be used to straighten out the wiggles, but this approach requires more geometry operations to identify and delete the void domain.

Finally, the plot with transparency suffers from z-fighting artifacts on the Symmetry/Roller boundaries, but this is rectified by shrinking one of the volumes slightly.

Application Library path: Optimization_Module/Design_Optimization/ mbb_beam_extruded_optimization

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click **3D**.
- 2 In the Select Physics tree, select Structural Mechanics>Solid Mechanics (solid).
- 3 Click Add.
- 4 Click Study.
- 5 In the Select Study tree, select Preset Studies for Selected Physics Interfaces> Optimization>Topology Optimization, Stationary.
- 6 Click Mone.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
a	3[m]	3 m	Beam half width
b	1[m]	l m	Beam height
С	O.1[m]	0.1 m	Beam half depth
L1	0.1[m]	0.1 m	Support width
volfrac	0.5	0.5	Maximum volume fraction

GEOMETRY I

Work Plane I (wpl)

In the Geometry toolbar, click Work Plane.

Work Plane I (wp I)>Plane Geometry

In the Model Builder window, click Plane Geometry.

Work Plane I (wp I)>Rectangle I (r I)

- I In the Work Plane toolbar, click Rectangle.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type a.
- 4 In the **Height** text field, type b.

Work Plane I (wbl)>Point I (btl)

- I In the Work Plane toolbar, click · Point.
- 2 In the Settings window for Point, locate the Point section.
- 3 In the yw text field, type L1.

Work Plane I (wpl)>Point 2 (pt2)

- I In the Work Plane toolbar, click
- 2 In the Settings window for Point, locate the Point section.
- 3 In the xw text field, type a-L1/2.
- 4 In the yw text field, type b.

Extrude | (ext|)

- I In the Model Builder window, under Component I (compl)>Geometry I right-click Work Plane I (wpl) and choose Extrude.
- 2 In the Settings window for Extrude, locate the Distances section.
- **3** In the table, enter the following settings:

Distances (m) С

Symmetry z Boundary

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Symmetry z Boundary in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the z maximum text field, type c*0.001.
- 5 Locate the Output Entities section. From the Include entity if list, choose Entity inside box.
- 6 In the Geometry toolbar, click **Build All**.

The model geometry is now complete.

MATERIALS

Topology Link I (toplnk I)

In the Model Builder window, under Component I (compl)>Materials right-click Topology Link I (toplnkI) and choose Delete.

ADD MATERIAL

- I In the Home toolbar, click 🤼 Add Material to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Structural steel.
- 4 Click Add to Global Materials in the window toolbar.
- 5 In the Home toolbar, click Radd Material to close the Add Material window.

MATERIALS

Material Link I (matlnk I)

In the Model Builder window, under Component I (compl) right-click Materials and choose More Materials>Material Link.

SOLID MECHANICS (SOLID)

Roller I

- I In the Model Builder window, under Component I (compl) right-click Solid Mechanics (solid) and choose Roller.
- 2 Select Boundaries 3 and 8 only.

Prescribed Displacement I

- I In the Physics toolbar, click **Boundaries** and choose **Prescribed Displacement**.
- 2 Select Boundary 1 only.
- 3 In the Settings window for Prescribed Displacement, locate the Prescribed Displacement section.
- 4 Select the Prescribed in y direction check box.

This is effectively a roller condition along the x-axis, but it is applied on a vertical boundary to avoid bending stiffness.

Boundary Load 1

- I In the Physics toolbar, click **Boundaries** and choose **Boundary Load**.
- **2** Select Boundary 7 only.

- 3 In the Settings window for Boundary Load, locate the Force section.
- 4 From the Load type list, choose Total force.
- **5** Specify the \mathbf{F}_{tot} vector as

0	x
-100[kN]	у
0	z

MESH I

Create a swept mesh along the extrusion direction of the geometry.

Free Triangular 1

- I In the Mesh toolbar, click A Boundary and choose Free Triangular.
- 2 In the Settings window for Free Triangular, locate the Boundary Selection section.
- 3 From the Selection list, choose Symmetry z Boundary.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size section.
- 3 From the Predefined list, choose Extremely fine.

Swept 1

- I In the Mesh toolbar, click A Swept.
- 2 In the Settings window for Swept, click Build All.

TOPOLOGY OPTIMIZATION

Density Model I (dtopol)

- I In the Model Builder window, under Component I (compl)>Topology Optimization click Density Model I (dtopol).
- 2 In the Settings window for Density Model, locate the Geometric Entity Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Symmetry z Boundary.
- **5** Locate the **Control Variable Initial Value** section. In the θ_0 text field, type volfrac.

DEFINITIONS

Use an extrusion operator to transfer the filtered design variable, theta f bnd, to the volume. This approach guarantees an extruded geometry.

General Extrusion I (genext1)

- I In the Definitions toolbar, click Nonlocal Couplings and choose General Extrusion.
- 2 In the Settings window for General Extrusion, locate the Source Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Symmetry z Boundary.
- **5** Locate the **Destination Map** section. In the **x-expression** text field, type X.
- **6** In the **y-expression** text field, type Y.
- 7 In the **z-expression** text field, type 0.
- 8 Locate the Source section. From the Source frame list, choose Material (X, Y, Z).

Variables 1

- I In the Model Builder window, right-click Definitions and choose Variables.
- 2 In the Settings window for Variables, locate the Geometric Entity Selection section.
- 3 From the Geometric entity level list, choose Domain.
- 4 From the Selection list, choose All domains.
- **5** Locate the **Variables** section. In the table, enter the following settings:

Name	Expression	Unit	Description
E_SIMP	mat1.Enu.E* genext1(dtopo1.theta_p)	Pa	Penalized Young's modulus
theta_f	<pre>genext1(dtopo1.theta_f)</pre>		Extruded filtered material volume factor

SOLID MECHANICS (SOLID)

Linear Elastic Material I

- I In the Model Builder window, under Component I (compl)>Solid Mechanics (solid) click Linear Elastic Material I.
- 2 In the Settings window for Linear Elastic Material, locate the Linear Elastic Material section.
- **3** From the E list, choose User defined. In the associated text field, type E_SIMP.

TOPOLOGY OPTIMIZATION

- I In the Model Builder window, click Study I.
- 2 In the Settings window for Study, type Topology Optimization in the Label text field. Initialize the study to create a default plot to display while solving.

3 In the Study toolbar, click $t_{=0}^{U}$ Get Initial Value.

The surface plot can visualize intermediate design variables, but now that the optimization has finished, it makes sense to change the filter dataset so that the threshold volume plot represents the optimized geometry.

Topology Optimization

- I In the Model Builder window, click Topology Optimization.
- 2 In the Settings window for Topology Optimization, locate the Optimization Solver section.
- 3 In the Maximum number of iterations text field, type 25.
- **4** Locate the **Constraints** section. In the table, enter the following settings:

Expression	Lower bound	Upper bound
comp1.dtopo1.theta_avg		volfrac

- **5** Locate the **Output While Solving** section. Select the **Plot** check box.
- 6 From the Plot group list, choose Output material volume factor.
- 7 In the Study toolbar, click **Compute**.

RESULTS

Topology Optimization

In the Model Builder window, expand the Results>Topology Optimization node.

Surface I

- I In the Model Builder window, expand the Results>Topology Optimization>
 Output material volume factor node, then click Surface I.
- 2 In the Output material volume factor toolbar, click Plot.

Filter

- I In the Model Builder window, expand the Results>Datasets node, then click Filter.
- 2 In the Settings window for Filter, locate the Expression section.
- **3** In the **Expression** text field, type theta f.

Threshold

- I In the Model Builder window, under Results>Topology Optimization click Threshold.
- 2 In the Threshold toolbar, click Plot.

Create a **Cut Plane** dataset for a 2D plot group, so that the design can be exported.

Cut Plane 1

- I In the Results toolbar, click Cut Plane.
- 2 In the Settings window for Cut Plane, locate the Data section.
- 3 From the Dataset list, choose Topology Optimization/Solution I (soll).
- 4 Locate the Plane Data section. From the Plane list, choose XY-planes.

Filter 2

- I In the **Results** toolbar, click **More Datasets** and choose **Filter**.
- 2 In the Settings window for Filter, locate the Data section.
- 3 From the Dataset list, choose Cut Plane 1.
- **4** Locate the **Expression** section. In the **Expression** text field, type theta_f.
- 5 Locate the Filter section. In the Lower bound text field, type 0.5.
- **6** Locate the **Evaluation** section. From the **Smoothing** list, choose **None**.
- 7 Clear the Use derivatives check box.
- 8 Right-click Filter 2 and choose Create Mesh Part.

MESH PART I

- I In the Model Builder window, under Global Definitions>Mesh Parts right-click Mesh Part I and choose Build All.
- 2 Right-click Global Definitions>Mesh Parts>Mesh Part I and choose Create Geometry.

GEOMETRY 2

Import I (impl)

- I In the Settings window for Import, locate the Import section.
- 2 Clear the Form solids from surface objects check box.
- 3 Locate the Selections of Resulting Entities section. Select the Resulting objects selection check box.
- 4 From the Show in physics list, choose Boundary selection.

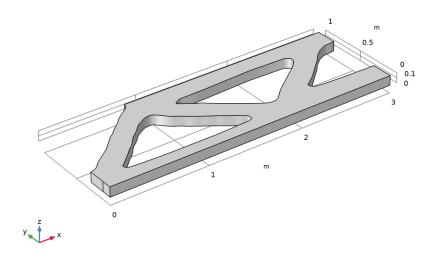
Extrude | (ext|)

- I In the Geometry toolbar, click **Extrude**.
- 2 In the Settings window for Extrude, locate the General section.
- 3 From the Input faces list, choose Import 1.

4 Locate the **Distances** section. In the table, enter the following settings:

Distances (m) С

5 Select the **Reverse direction** check box.


Line Segment I (Is I)

- I In the Geometry toolbar, click \bigcirc More Primitives and choose Line Segment.
- 2 In the Settings window for Line Segment, locate the Starting Point section.
- 3 From the Specify list, choose Coordinates.
- 4 In the y text field, type L1.
- 5 Locate the Endpoint section. From the Specify list, choose Coordinates.
- 6 In the y text field, type L1.
- 7 In the z text field, type c.

Line Segment 2 (Is2)

- I In the Geometry toolbar, click \bigcirc More Primitives and choose Line Segment.
- 2 In the Settings window for Line Segment, locate the Starting Point section.
- 3 From the Specify list, choose Coordinates.
- 4 In the x text field, type a-L1/2.
- **5** In the **y** text field, type **b**.
- **6** Locate the **Endpoint** section. From the **Specify** list, choose **Coordinates**.
- 7 In the x text field, type a-L1/2.
- **8** In the **y** text field, type b.
- 9 In the z text field, type c.

10 In the Geometry toolbar, click Build All.

The geometry should now look like that in Figure 1.

Moving Boundaries

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Moving Boundaries in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the x minimum text field, type a*0.001.
- 5 In the x maximum text field, type a*0.999.
- 6 In the y minimum text field, type b*0.001.
- 7 In the y maximum text field, type b*0.999.
- 8 In the z minimum text field, type c*0.001.
- 9 In the z maximum text field, type c*0.999.

Symmetry x Boundary

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Symmetry x Boundary in the Label text field.

- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the x minimum text field, type a*0.999.
- 5 Locate the **Output Entities** section. From the **Include entity if** list, choose **Entity inside box**.

Roller Support

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Roller Support in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the x maximum text field, type a*0.001.
- 5 In the y maximum text field, type L1*1.001.
- **6** Locate the **Output Entities** section. From the **Include entity if** list, choose **Entity inside box**.

Symmetry z Edges

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Adjacent Selection.
- 2 In the Settings window for Adjacent Selection, type Symmetry z Edges in the Label text field.
- 3 Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
- 4 Locate the Output Entities section. From the Geometric entity level list, choose Adjacent edges.
- **5** Locate the **Input Entities** section. Click + **Add**.
- 6 In the Add dialog box, select Import I in the Input selections list.
- 7 Click OK.

Moving Boundaries Edges

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Adjacent Selection.
- 2 In the Settings window for Adjacent Selection, type Moving Boundaries Edges in the Label text field.
- 3 Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
- 4 Locate the Output Entities section. From the Geometric entity level list, choose Adjacent edges.
- **5** Locate the **Input Entities** section. Click **Add**.
- 6 In the Add dialog box, select Moving Boundaries in the Input selections list.
- 7 Click OK.

Load Boundary

- I In the Geometry toolbar, click **Selections** and choose **Box Selection**.
- 2 In the Settings window for Box Selection, type Load Boundary in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- 4 Locate the **Box Limits** section. In the **x minimum** text field, type a-L1/1.999.
- 5 In the y minimum text field, type b*0.999.
- 6 Locate the Output Entities section. From the Include entity if list, choose Entity inside box.

Roller Design

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Complement Selection.
- 2 In the Settings window for Complement Selection, type Roller Design in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Boundary.
- **4** Locate the **Input Entities** section. Click + **Add**.
- 5 In the Add dialog box, in the Selections to invert list, choose Moving Boundaries and Load Boundary.
- 6 Click OK.

Roller Design Edges

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Adjacent Selection.
- 2 In the Settings window for Adjacent Selection, type Roller Design Edges in the Label text field.
- 3 Locate the Input Entities section. From the Geometric entity level list, choose Boundary.
- 4 Click + Add.
- 5 In the Add dialog box, select Roller Design in the Input selections list.
- 6 Click OK.
- 7 In the Settings window for Adjacent Selection, locate the Output Entities section.
- 8 From the Geometric entity level list, choose Adjacent edges.

Moving Boundaries Lower Edges

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Intersection Selection.
- 2 In the Settings window for Intersection Selection, type Moving Boundaries Lower Edges in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Edge.

- **4** Locate the **Input Entities** section. Click **Add**.
- 5 In the Add dialog box, in the Selections to intersect list, choose Symmetry z Edges and Moving Boundaries Edges.
- 6 Click OK.

Lower Points

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Lower Points in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Point.
- 4 Locate the Box Limits section. In the y maximum text field, type 0.001*b.

Upper Points

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Upper Points in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Point.
- 4 Locate the Box Limits section. In the y minimum text field, type b*0.999.

Upper and Lower Points

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Union Selection.
- 2 In the Settings window for Union Selection, type Upper and Lower Points in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Point.
- 4 Locate the Input Entities section. Click + Add.
- 5 In the Add dialog box, in the Selections to add list, choose Lower Points and Upper Points.
- 6 Click OK.

Left Points

- I In the Geometry toolbar, click 🗣 Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Left Points in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Point.
- 4 Locate the Box Limits section. In the x maximum text field, type b*0.001.

Right Points

- I In the Geometry toolbar, click 🔓 Selections and choose Box Selection.
- 2 In the Settings window for Box Selection, type Right Points in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Point.

4 Locate the Box Limits section. In the x minimum text field, type a*0.999.

Left and Right Points

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Union Selection.
- 2 In the Settings window for Union Selection, type Left and Right Points in the Label text field.
- 3 Locate the Geometric Entity Level section. From the Level list, choose Point.
- 4 Locate the Input Entities section. Click + Add.
- 5 In the Add dialog box, in the Selections to add list, choose Left Points and Right Points.
- 6 Click OK.

COMPONENT 2 (COMP2)

Add the physics necessary for performing the shape optimization.

ADD PHYSICS

- I In the Home toolbar, click and Physics to open the Add Physics window.
- 2 Go to the Add Physics window.
- 3 In the tree, select Structural Mechanics>Solid Mechanics (solid).
- 4 Find the Physics interfaces in study subsection. In the table, clear the Solve check box for Topology Optimization.
- **5** Click **Add to Component 2** in the window toolbar.
- 6 In the tree, select Mathematics>PDE Interfaces>Lower Dimensions> Coefficient Form Edge PDE (ce).
- 7 Click to expand the **Dependent Variables** section. In the table, clear the **Solve** check box for Topology Optimization.
- **8** Click **Add to Component 2** in the window toolbar.
- 9 In the Home toolbar, click and Physics to close the Add Physics window.

MATERIALS

Material Link 2 (matlnk2)

In the Model Builder window, under Component 2 (comp2) right-click Materials and choose More Materials>Material Link.

COMPONENT 2 (COMP2)

Add control variable fields and Helmholtz filters on the edges shared by the z symmetry plane and the boundaries to be optimized.

Control Variable Field I (pl)

- I In the Definitions toolbar, click ? Optimization and choose Control Variables> Control Variable Field.
- 2 In the Settings window for Control Variable Field, type movex in the Name text field.
- **3** Locate the **Geometric Entity Selection** section. From the **Geometric entity level** list, choose **Edge**.
- 4 From the Selection list, choose Moving Boundaries Lower Edges.
- 5 Locate the Discretization section. From the Element order list, choose Linear.
- 6 Locate the Bounds section. In the Lower bound text field, type -1.
- 7 In the **Upper bound** text field, type 1.

Control Variable Field 2 (p2)

- I Right-click Control Variable Field I (movex) and choose Duplicate.
- 2 In the Settings window for Control Variable Field, type movey in the Name text field.

TOPOLOGY OPTIMIZATION

Topology Optimization

- I In the Model Builder window, under Topology Optimization click Topology Optimization.
- 2 In the Settings window for Topology Optimization, locate the Control Variables section.
- 3 In the table, clear the Solve for check boxes for Control Variable Field I (movex) and Control Variable Field 2 (movey).

COEFFICIENT FORM EDGE PDE (CE)

- I In the Model Builder window, under Component 2 (comp2) click Coefficient Form Edge PDE (ce).
- 2 In the Settings window for Coefficient Form Edge PDE, locate the Edge Selection section.
- 3 From the Selection list, choose Moving Boundaries Lower Edges.
- 4 Locate the **Units** section. In the **Source term quantity** table, enter the following settings:

Source term quantity	Unit
Custom unit	1

- 5 Click to expand the Discretization section. From the Frame list, choose Geometry.
- 6 Click to expand the **Dependent Variables** section. In the **Field name** text field, type move.
- 7 Click + Add Dependent Variable.

8 In the **Dependent variables** table, enter the following settings:

dXa dYg

GLOBAL DEFINITIONS

Parameters 1

Add the shape optimization parameters.

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
Lmin	0.2[m]	0.2 m	Shape optimization filter radius
Lmax	0.1[m]	0.1 m	Shape optimization maximum displacement

COEFFICIENT FORM EDGE PDE (CE)

Coefficient Form PDE I

- I In the Model Builder window, under Component 2 (comp2)> Coefficient Form Edge PDE (ce) click Coefficient Form PDE 1.
- 2 In the Settings window for Coefficient Form PDE, locate the Diffusion Coefficient section.
- 3 In the c text-field array, type Lmin² in the first column of the first row.
- 4 In the c text-field array, type $Lmin^2$ in the second column of the second row.
- **5** Locate the **Absorption Coefficient** section. In the α text-field array, type 1 in the first column of the first row.
- **6** In the α text-field array, type 1 in the second column of the second row.
- **7** Locate the **Source Term** section. In the f text-field array, type movex on the first row.
- **8** In the f text-field array, type movey on the second row.

This completes the setup of the Helmholtz filter on an edge with a filter radius of Lmin. Next specify boundary conditions to prevent the shape from moving outside the box of the topology optimization.

Dirichlet Boundary Condition I

I In the Physics toolbar, click Points and choose Dirichlet Boundary Condition.

- 2 In the Settings window for Dirichlet Boundary Condition, locate the Point Selection section.
- 3 From the Selection list, choose Upper and Lower Points.
- 4 Locate the Dirichlet Boundary Condition section. Clear the Prescribed value of dXg check box.

Dirichlet Boundary Condition 2

- I In the Physics toolbar, click Points and choose Dirichlet Boundary Condition.
- 2 In the Settings window for Dirichlet Boundary Condition, locate the Point Selection section.
- 3 From the Selection list, choose Left and Right Points.
- 4 Locate the Dirichlet Boundary Condition section. Clear the Prescribed value of dYg check box.

DEFINITIONS (COMP2)

Add a nonlocal integration coupling to enforce the volume constraint.

Integration I (intobl)

- I In the Definitions toolbar, click Nonlocal Couplings and choose Integration.
- 2 In the Settings window for Integration, locate the Source Selection section.
- 3 From the Selection list, choose All domains.

Once again use an extrusion operator to transfer the filtered field from the edges to the boundaries.

General Extrusion 2 (genext2)

- I In the Definitions toolbar, click Nonlocal Couplings and choose General Extrusion.
- 2 In the Settings window for General Extrusion, locate the Source Selection section.
- 3 From the Geometric entity level list, choose Edge.
- 4 From the Selection list, choose Moving Boundaries Lower Edges.
- **5** Locate the **Destination Map** section. In the **x-expression** text field, type Xg.
- **6** In the **y-expression** text field, type Yg.
- 7 In the **z-expression** text field, type 0.
- 8 Locate the Source section. From the Source frame list, choose Geometry (Xg, Yg, Zg).

Variables 2

I In the Model Builder window, right-click Definitions and choose Variables.

- 2 In the Settings window for Variables, locate the Geometric Entity Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Moving Boundaries.
- **5** Locate the **Variables** section. In the table, enter the following settings:

Name	Expression	Unit	Description
dXg_bnd	genext2(dXg)*Lmax	m	X boundary displacement
dYg_bnd	genext2(dYg)*Lmax	m	Y boundary displacement

COMPONENT 2 (COMP2)

Deforming Domain I

- I In the Definitions toolbar, click Deformed Geometry and choose Domains> **Deforming Domain.**
- 2 In the Settings window for Deforming Domain, locate the Domain Selection section.
- 3 From the Selection list, choose All domains.

Prescribed Normal Mesh Displacement I

- I In the Definitions toolbar, click Deformed Geometry and choose Boundaries> Prescribed Normal Mesh Displacement.
- 2 In the Settings window for Prescribed Normal Mesh Displacement, locate the **Boundary Selection** section.
- 3 From the Selection list, choose Roller Design.

Prescribed Mesh Displacement 1

- I In the Definitions toolbar, click Deformed Geometry and choose Boundaries> Prescribed Mesh Displacement.
- 2 In the Settings window for Prescribed Mesh Displacement, locate the Boundary Selection
- 3 From the Selection list, choose Moving Boundaries.
- **4** Locate the **Prescribed Mesh Displacement** section. Specify the dx vector as

dXg_bnd	X
dYg_bnd	Υ
0	Z

SOLID MECHANICS 2 (SOLID2)

In the Model Builder window, under Component 2 (comp2) click Solid Mechanics 2 (solid2).

Roller I

- I In the Physics toolbar, click **Boundaries** and choose Roller.
- 2 In the Settings window for Roller, locate the Boundary Selection section.
- 3 From the Selection list, choose Symmetry x Boundary.

Roller 2

- I In the Physics toolbar, click **Boundaries** and choose Roller.
- 2 In the Settings window for Roller, locate the Boundary Selection section.
- 3 From the Selection list, choose Import 1.

Prescribed Displacement I

- I In the Physics toolbar, click **Boundaries** and choose **Prescribed Displacement**.
- 2 In the Settings window for Prescribed Displacement, locate the Boundary Selection section.
- 3 From the Selection list, choose Roller Support.
- 4 Locate the Prescribed Displacement section. Select the Prescribed in y direction check box.

Boundary Load 1

- I In the Physics toolbar, click **Boundaries** and choose **Boundary Load**.
- 2 In the Settings window for Boundary Load, locate the Boundary Selection section.
- 3 From the Selection list, choose Load Boundary.
- 4 Locate the Force section. From the Load type list, choose Total force.
- **5** Specify the \mathbf{F}_{tot} vector as

0	x
-100[kN]	у
0	z

MESH 2

Once again create a swept mesh along the extrusion direction of the geometry.

Free Triangular 1

- I In the Mesh toolbar, click A Boundary and choose Free Triangular.
- 2 In the Settings window for Free Triangular, locate the Boundary Selection section.

3 From the **Selection** list, choose **Import 1**.

Size

- I In the Model Builder window, click Size.
- 2 In the Settings window for Size, locate the Element Size section.
- 3 From the Predefined list, choose Extremely fine.
- 4 Click to expand the Element Size Parameters section. In the Curvature factor text field, type 2.

Swebt 1

- I In the Mesh toolbar, click A Swept.
- 2 In the Settings window for Swept, click **Build All**.

ADD STUDY

- I In the Home toolbar, click Add Study to open the Add Study window.
- 2 Go to the Add Study window.
- **3** Find the **Physics interfaces in study** subsection. In the table, clear the **Solve** check box for Solid Mechanics (solid).
- 4 Find the Studies subsection. In the Select Study tree, select General Studies>Stationary.
- 5 Click Add Study in the window toolbar.
- 6 In the Model Builder window, click the root node.
- 7 In the Home toolbar, click Add Study to close the Add Study window.

TOPOLOGY OPTIMIZATION

Steb 1: Stationary

- I In the Settings window for Stationary, locate the Physics and Variables Selection section.
- 2 In the table, clear the Solve for check box for Deformed geometry (Component 2).

SHAPE OPTIMIZATION

- I In the Model Builder window, click Study 2.
- 2 In the Settings window for Study, type Shape Optimization in the Label text field.

Shape Optimization

- I In the Study toolbar, click optimization and choose Shape Optimization.
- 2 In the Settings window for Shape Optimization, locate the Optimization Solver section.
- 3 In the Maximum number of iterations text field, type 20.

- 4 Clear the Move limits check box.
- 5 Click Replace Expression in the upper-right corner of the Objective Function section. From the menu, choose Component 2 (comp2)>Solid Mechanics 2>Global> comp2.solid2.Ws_tot - Total elastic strain energy - J.
- 6 Locate the Objective Function section. From the Objective scaling list, choose Initial solution based.
- 7 Locate the Control Variables section. In the table, clear the Solve for check box for Density Model I (dtopol).
- 8 Click Add Expression in the upper-right corner of the Constraints section. From the menu, choose Component 2 (comp2)>Definitions>Nonlocal couplings> comp2.intop1(expr) - Integration 1.
- **9** Locate the **Constraints** section. In the table, enter the following settings:

Expression	Lower bound	Upper bound
comp2.intop1(1)/a/b/c		volfrac

Steb 1: Stationary

- I In the Model Builder window, click Step I: Stationary.
- 2 In the Settings window for Stationary, locate the Physics and Variables Selection section.
- 3 In the table, clear the Solve for check box for Topology Optimization (Component 1). Initialize the study to create a plot for use while solving.
- 4 In the Study toolbar, click $t_{=0}^{U}$ Get Initial Value.

The default solver groups the filtered boundary displacements separate from the volume material displacements and this breaks the sensitivity analysis. This issue can be solved by grouping them together or by using a **Fully Coupled** solver.

RESULTS

3D Plot Group 7

- I In the Model Builder window, expand the Results>3D Plot Group 7 node, then click 3D Plot Group 7.
- 2 In the Settings window for 3D Plot Group, locate the Plot Settings section.
- 3 From the Color list, choose Gray.
- 4 From the Frame list, choose Geometry (Xg, Yg, Zg).
- 5 In the Model Builder window, collapse the 3D Plot Group 7 node.

Line 1

- I In the Model Builder window, expand the 3D Plot Group 7 node, then click Line I.
- 2 In the Settings window for Line, locate the Coloring and Style section.
- **3** From the **Coloring** list, choose **Uniform**.
- 4 From the Color list, choose Black.

Arrow Line 1

- I In the Model Builder window, right-click 3D Plot Group 7 and choose Arrow Line.
- 2 In the Settings window for Arrow Line, locate the Expression section.
- 3 In the X component text field, type dXg*Lmax.
- 4 In the Y component text field, type dYg*Lmax.
- 5 In the **Z** component text field, type 0.
- 6 Locate the Coloring and Style section. From the Arrow base list, choose Head.
- 7 Select the Scale factor check box.
- 8 Locate the Arrow Positioning section. From the Placement list, choose Mesh nodes.

Selection 1

- I Right-click Arrow Line I and choose Selection.
- 2 In the Settings window for Selection, locate the Selection section.
- 3 From the Selection list, choose Moving Boundaries Lower Edges.

Color Expression 1

- I In the Model Builder window, right-click Arrow Line I and choose Color Expression.
- 2 In the Settings window for Color Expression, locate the Expression section.
- 3 In the Expression text field, type max(abs(dXg), abs(dYg)).
- 4 Click to expand the Range section. Select the Manual color range check box.
- 5 In the Maximum text field, type 1.

Shape Optimization

- I In the Model Builder window, under Results click 3D Plot Group 7.
- 2 In the Settings window for 3D Plot Group, type Shape Optimization in the Label text field.

SHAPE OPTIMIZATION

Shape Optimization

I In the Model Builder window, under Shape Optimization click Shape Optimization.

- 2 In the Settings window for Shape Optimization, locate the Output While Solving section.
- **3** Select the **Plot** check box.
- 4 From the Plot group list, choose Shape Optimization.

Solver Configurations

In the Model Builder window, expand the Shape Optimization>Solver Configurations node.

Solution 2 (sol2)

- I In the Model Builder window, expand the Shape Optimization>Solver Configurations> Solution 2 (sol2)>Optimization Solver I>Stationary I>Segregated I node.
- 2 Right-click Material frame coordinates and choose Disable.
- 3 In the Model Builder window, click Coefficient Form Edge PDE.
- 4 In the Settings window for Segregated Step, locate the General section.
- 5 Under Variables, click + Add.
- 6 In the Add dialog box, select Material mesh displacement (comp2.material.disp) in the Variables list.
- 7 Click OK.
- 8 In the Study toolbar, click **Compute**.

RESULTS

Applied Loads (solid), Applied Loads (solid2), Topology Optimization I

- I In the Model Builder window, under Results, Ctrl-click to select Applied Loads (solid), Applied Loads (solid2), and Topology Optimization 1.
- 2 Right-click and choose Delete.

Create a dataset in the geometry frame, so that the initial and optimized volumes can be plotted on top of each other. The plot illustrates the shape change in an alternative way, but it only makes sense with transparency enabled.

Topology Optimization/Solution 1 (4) (soll)

- I In the Results toolbar, click More Datasets and choose Solution.
- 2 In the Settings window for Solution, locate the Solution section.
- 3 From the Solution list, choose Solution 2 (sol2).
- 4 From the Component list, choose Component 2 (comp2).
- 5 From the Frame list, choose Geometry (Xg, Yg, Zg).

Volumetric (for transparent view)

- I In the Results toolbar, click **3D Plot Group**.
- 2 In the Settings window for 3D Plot Group, locate the Data section.
- 3 From the Dataset list, choose Shape Optimization/Solution 2 (3) (sol2).
- 4 Locate the Plot Settings section. Clear the Plot dataset edges check box.
- **5** In the **Label** text field, type Volumetric (for transparent view).

Volume 1

- I Right-click Volumetric (for transparent view) and choose Volume.
- 2 In the Settings window for Volume, locate the Coloring and Style section.
- **3** From the **Coloring** list, choose **Uniform**.

Volume 2

- I In the Model Builder window, right-click Volumetric (for transparent view) and choose Volume.
- 2 In the Settings window for Volume, locate the Data section.
- 3 From the Dataset list, choose Shape Optimization/Solution 2 (4) (sol2).
- 4 Locate the Coloring and Style section. From the Coloring list, choose Uniform.
- 5 From the Color list, choose Gray.
- **6** Click the **Transparency** button in the **Graphics** toolbar.
- 7 In the Volumetric (for transparent view) toolbar, click Plot. There are some z-fighting artifacts on the **Symmetry/Roller** boundaries, but this can be avoided by shrinking one of the plots slightly.

Deformation I

- I In the Model Builder window, right-click Volume I and choose Deformation.
- 2 In the Settings window for Deformation, locate the Expression section.
- 3 In the X component text field, type -1e-3*(Xg/a-0.5).
- 4 In the Y component text field, type -1e-3*(Yg/b-0.5).
- 5 In the **Z** component text field, type -1e-3*(Zg/c-0.5).
- 6 Locate the Scale section.
- 7 Select the Scale factor check box. In the associated text field, type 1.
- 8 In the Volumetric (for transparent view) toolbar, click **Tool** Plot.

Stress (solid) Topology Optimization

I In the Model Builder window, under Results click Stress (solid).

2 In the Settings window for 3D Plot Group, type Stress (solid) Topology Optimization in the **Label** text field.