

Laminar Modular Mixer — Template File

This model is a template MPH-file used by the laminar case of the Modular Mixer models. The geometry is a combination of a Rushton impeller and a flat bottom tank. The geometry subsequences to build the impeller and vessel are imported from the Part Libraries.

Application Library path: Mixer_Module/Tutorials/modular_mixer_geom

Modeling Instructions

ADD COMPONENT

In the **Home** toolbar, click **Add Component** and choose **3D**.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
Н	0.0805[m]	0.0805 m	Vessel height
T	Н	0.0805 m	Vessel diameter
С	1/3*H	0.026833 m	Clearance
В	4	4	Number of baffles
bw	T/10	0.00805 m	Baffle width
Da	1/3*T	0.026833 m	Impeller diameter
shaft_diameter	1/10*Da	0.0026833 m	Shaft diameter
blade_length	Da/4	0.0067083 m	Blade length for Rushton turbine
blade_width	Da/5	0.0053667 m	Width of impeller blade

PART LIBRARIES

- I In the Home toolbar, click Windows and choose Part Libraries.
- 2 In the Model Builder window, under Component I (compl) click Geometry I.

- 3 In the Part Libraries window, select Mixer Module>Impellers, Radial>rushton_impeller in the tree.
- 4 Click Add to Geometry.

GEOMETRY I

Rushton Impeller I (pil)

- I In the Model Builder window, under Component I (compl)>Geometry I click Rushton Impeller I (pil).
- 2 In the Settings window for Part Instance, locate the Input Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
d_hu	shaft_diameter+Da/ 20	0.004025 m	Diameter of impeller hub
l_ib	blade_length	0.0067083 m	Length of the impeller blades
w_ib	blade_width	0.0053667 m	Width of the impeller blade
d_id	Da-2*(blade_length* 3/4)	0.016771 m	Disk diameter for Rushton and Smith turbines
d_im	Da	0.026833 m	Impeller diameter
hp_im	-blade_width/2	-0.0026833 m	Position of the lowest part of the impeller hub or impeller shaft along the z- axis
d_is	shaft_diameter	0.0026833 m	Diameter of impeller shaft

- 4 Click to expand the Object Selections section. Click New Cumulative Selection.
- 5 In the New Cumulative Selection dialog box, type Impeller Domains in the Name text field.
- 6 Click OK.
- 7 In the table, enter the following settings:

Name	Contribute to	
Impeller	Impeller Domains	
Tank	None	

8 In the Settings window for Part Instance, click to expand the Boundary Selections section.

- 9 Click New Cumulative Selection.
- 10 In the New Cumulative Selection dialog box, type Rotating Interior Wall in the Name text field.
- II Click OK.
- 12 In the Settings window for Part Instance, locate the Boundary Selections section.
- 13 Click New Cumulative Selection.
- 14 In the New Cumulative Selection dialog box, type Rotating Wall in the Name text field.
- I5 Click OK.
- **16** In the table, enter the following settings:

Name	Contribute to
Impeller blades	Rotating Interior Wall
Impeller disk	Rotating Interior Wall
Impeller hub	Rotating Wall
Surfaces to hide	None
Control surface upper	None
Control surface lower	None
Control surface side	None

17 In the Settings window for Part Instance, click to expand the Edge Selections section.

- **18** Click **New Cumulative Selection**.
- 19 In the New Cumulative Selection dialog box, type Remove Edges in the Name text field.
- 20 Click OK.
- **21** In the table, enter the following settings:

Name	Contribute to
Edges to remove	Remove Edges

- 22 In the Settings window for Part Instance, locate the Selection Settings section.
- **2** Select the **Keep noncontributing selections** check box.

PART LIBRARIES

- I In the Home toolbar, click Windows and choose Part Libraries.
- 2 In the Model Builder window, click Geometry 1.
- 3 In the Part Libraries window, select Mixer Module>Shafts>impeller_shaft in the tree.

4 Click Add to Geometry.

GEOMETRY I

Impeller Shaft I (þi2)

- I In the Model Builder window, under Component I (compl)>Geometry I click Impeller Shaft I (pi2).
- 2 In the Settings window for Part Instance, locate the Input Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
hp_im	-blade_width/2	-0.0026833 m	Position of the lowest part of the impeller hub or impeller shaft along the z- axis
d_is	shaft_diameter	0.0026833 m	Impeller shaft diameter
l_is	H-C+blade_width	0.059033 m	Impeller shaft length

4 Click to expand the **Object selections** section. In the table, enter the following settings:

Name	Contribute to	
Impeller	Impeller Domains	

5 Click to expand the **Boundary selections** section. In the table, enter the following settings:

Name	Contribute to
Exterior	None
Impeller	Rotating Wall

6 Click to expand the **Edge selections** section. In the table, enter the following settings:

Name	Contribute to
Edges to remove	Remove Edges
Impeller	None

7 Locate the Selection Settings section. Select the Keep noncontributing selections check box.

Union I (uni I)

I In the Geometry toolbar, click Booleans and Partitions and choose Union.

- 2 Click in the **Graphics** window and then press Ctrl+A to select both objects.
- 3 In the Settings window for Union, locate the Union section.
- **4** From the **Repair tolerance** list, choose **Relative**.

PART LIBRARIES

- I In the Geometry toolbar, click A Parts and choose Part Libraries.
- 2 In the Model Builder window, click Geometry 1.
- 3 In the Part Libraries window, select Mixer Module>Tanks>flat_bottom_tank in the tree.
- 4 Click Add to Geometry.

GEOMETRY I

Flat Bottom Tank I (þi3)

- I In the Model Builder window, under Component I (compl)>Geometry I click Flat Bottom Tank I (pi3).
- 2 In the Settings window for Part Instance, locate the Position and Orientation of Output section.
- 3 Find the Rotation subsection. In the Rotation angle text field, type 90.
- **4** Locate the **Input Parameters** section. In the table, enter the following settings:

Name	Expression	Value	Description
n_ba	В	4	Number of baffles
w_ba	bw	0.00805 m	Baffle width
d_im	Da	0.026833 m	Impeller diameter
d_ta	Т	0.0805 m	Tank diameter
h_ta	Н	0.0805 m	Tank height
hp_ta	- C	-0.026833 m	Height position, cylindrical surface
rf_ta	0	0 m	Fillet radius of lower tank edge

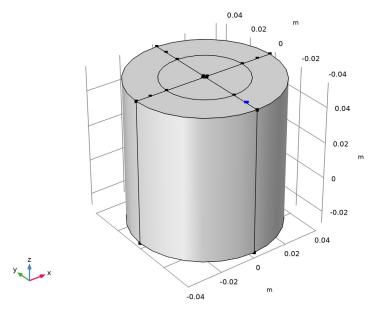
- 5 Locate the Boundary Selections section. Click New Cumulative Selection.
- 6 In the New Cumulative Selection dialog box, type Symmetry in the Name text field.
- 7 Click OK.
- 8 In the Settings window for Part Instance, locate the Boundary Selections section.
- 9 Click New Cumulative Selection.
- 10 In the New Cumulative Selection dialog box, type Interior Wall in the Name text field.

- II Click OK.
- 12 In the Settings window for Part Instance, locate the Boundary Selections section.
- 13 Click New Cumulative Selection.
- 14 In the New Cumulative Selection dialog box, type View suppression in the Name text field.
- I5 Click OK.
- 16 Click to expand the Boundary selections section. In the table, enter the following settings:

Name	Contribute to
Exterior	None
Fluid surface	Symmetry
Tank walls	None
Baffles	Interior Wall
Tank	None
Surfaces to hide	View suppression

17 In the Settings window for Part Instance, locate the Selection Settings section.

18 Select the **Keep noncontributing selections** check box.

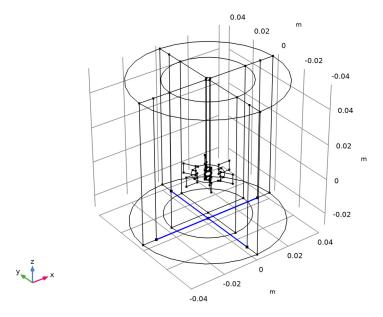

Fluid Domain

- I In the Geometry toolbar, click Booleans and Partitions and choose Difference.
- 2 In the Settings window for Difference, type Fluid Domain in the Label text field.
- 3 Locate the Difference section. From the Objects to add list, choose Tank (Flat Bottom Tank I).
- 4 From the Objects to subtract list, choose Impeller Domains.
- 5 From the Repair tolerance list, choose Relative.
- 6 Locate the Selections of Resulting Entities section. Select the Resulting objects selection check box.
- 7 From the Show in physics list, choose All levels.

Flat Pressure Point

- I In the Geometry toolbar, click 🔓 Selections and choose Explicit Selection.
- 2 In the Settings window for Explicit Selection, type Flat Pressure Point in the Label text field.
- 3 Locate the Entities to Select section. From the Geometric entity level list, choose Point.

4 On the object dif1, select Point 34 only.



- 5 Locate the Resulting Selection section. Find the Cumulative selection subsection. Click New.
- **6** In the **New Cumulative Selection** dialog box, type Pressure Point Constraint in the Name text field.
- 7 Click OK.

Edges to Remove

- I In the Geometry toolbar, click 🔓 Selections and choose Explicit Selection.
- 2 In the Settings window for Explicit Selection, type Edges to Remove in the Label text field.
- 3 Locate the Entities to Select section. From the Geometric entity level list, choose Edge.

4 On the object dif1, select Edges 9, 61, 78, and 79 only.

5 Locate the Resulting Selection section. Find the Cumulative selection subsection. From the Contribute to list, choose Remove Edges.

Rotating Fluid Domain

- I In the Geometry toolbar, click \(\frac{1}{2} \) Selections and choose Explicit Selection.
- 2 Click the Zoom Extents button in the Graphics toolbar.
- 3 On the object dif1, select Domain 2 only.
- 4 In the Settings window for Explicit Selection, type Rotating Fluid Domain in the Label text field.

Ignore Edges I (ige I)

- I In the Geometry toolbar, click \times \text{Virtual Operations} and choose Ignore Edges.
- 2 In the Settings window for Ignore Edges, locate the Input section.
- 3 From the Edges to ignore list, choose Remove Edges.
- 4 Clear the Ignore adjacent vertices check box.
- 5 In the Geometry toolbar, click **Build All**. The model geometry is now complete.