

Domain Activation and Deactivation

Introduction

Heating of an object from alternating regions is one example where the modeling technique of activating and deactivating physics on domains can be useful. This example demonstrates how you can apply this technique using the LiveLinkTM for MATLAB[®].

Model Definition

Assume that you want to study the heat distribution in a larger copper plate as it is heated by a steel plate that is moved between various locations. The hot steel plate remains in each spot on the base plate for two minutes before being moved to the next.

In Figure 1 the copper plate is shown in orange. All four locations of the steel plate are present in the geometry, but only one of those is active at any given time. Assume that the hot plate moves instantaneously every two minutes by deactivating the old and activating a new domain in the figure. The active domains are shown in blue, and are also marked with a filled circle.

The heat is conducted between the steel plate, with an initial temperature of 500 K, and the copper plate through a thin thermally resistive layer. The copper plate is cooled by the surrounding air, a process which you model with convective cooling using a heat transfer coefficient.

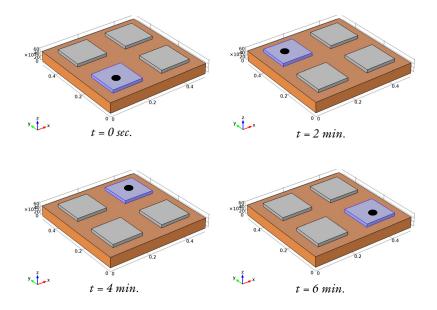


Figure 1: Model geometry with the copper plate in orange and the active steel plate in blue marked by a filled circle.

Results and Discussion

Figure 2 shows the temperature at two of the corners and in the middle of the top surface of the copper plate. While the temperature is increasing at all three locations the corners

show a larger fluctuation in temperature due to the steel plate alternating between locations close by or further away from the points.

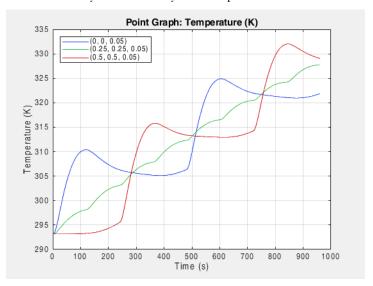


Figure 2: The temperature at two of the corners and in the middle of the top surface of the copper plate.

You can follow the temperature distribution in the copper plate as it heats up during the time frame of the simulation in Figure 3.

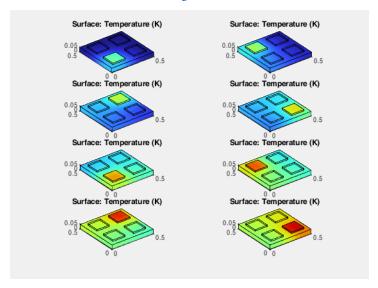


Figure 3: Temperature distribution in the copper plate.

Notes About the COMSOL Implementation

In addition to the activation and deactivation of domains this example demonstrates other important modeling techniques, namely

- · How to use a box selection for moving boundary conditions
- How to use the previous solution as initial condition in selected domains.

The most efficient approach for this simulation is to start by setting up the heat transfer problem in the graphical user interface of the COMSOL Desktop[®]. You can then save the model *.mph file, which you can easily load into MATLAB®, where you continue to implement the script for solving the model.

Wrapper functions used by the script:

- mphopen to load the model .mph file.
- mphglobal to evaluate global quantities in the model.
- mphplot to display plots.

```
Application Library path: LiveLink_for_MATLAB/Tutorials/domain_activation_llmatlab
```

Modeling Instructions — MATLAB®

In this section you find a detailed explanation of the commands you need to enter at the MATLAB command line in order to run the simulation.

I Start COMSOL with MATLAB.

You now have two possibilities to continue:

- Enter each command, starting at step 2 below, at the MATLAB command line.
- Paste the full model script, included in the section Model M-File, into a text editor, then save the file with a ".m" extension, and finally run this file in MATLAB.
- **2** Load the model containing the heat transfer simulation:

```
model = mphopen('domain_activation_llmatlab');
```

Note: See the section *Modeling Instructions* — *COMSOL Desktop* for the modeling instruction of the model .mph file domain_activation_llmatlab.mph.

3 Enter the following command to create a list of domain indices that correspond to the activation order of the domains:

```
domInd = [2,3,5,4];
```

4 Create a shortcut to the heat transfer physics interface by typing the following:

```
ht = model.physics('ht');
```

5 Create a for-loop with eight iterations:

```
for i = 1:8
```

6 The next command defines the variable k as the modulus of the division of the iteration number by 8. Use this variable in step 8 below to define which domain becomes active in the current iteration.

```
k = mod(i.4):
```

7 Type the following commands to prevent k to be null:

```
if k == 0
```

```
k = 4; end
```

8 The heat transfer physics interface should be active only on the copper plate, domain 1, and the currently active steel plate, domain k. Set the top plate selection feature node 'sel1':

```
model.component('comp1').selection('sel1').set(domInd(k));
```

9 Solve the model:

```
model.study('std1').run;
```

Once the solution of the first iteration is computed you need make some changes in the model object before continuing the analysis.

10 First, create a cut point dataset to plot the temperature at points (0;0;L/10), (L/2;L/2;L/10), and (L;L;L/10), then create the plot group for the plot. Enter:

```
if i==1
   cpt1 = model.result.dataset.create('cpt1', 'CutPoint3D');
   cpt1.set('pointx', '0 L/2 L');
   cpt1.set('pointy', '0 L/2 L');
   cpt1.set('pointz', 'L/10');
   pg1 = model.result.create('pg1', 'PlotGroup1D');
   pg1.set('data', 'cpt1');
   pg1.set('legendpos', 'upperleft');
   ptgr1 = pg1.feature.create('ptgr1', 'PointGraph');
   ptgr1.set('legend', 'on');
```

II Set up a 3D surface plot to display the temperature distribution in the model by typing the following:

```
pg2 = model.result.create('pg2', 'PlotGroup3D');
surf1 = pg2.feature.create('surf1', 'Surface');
surf1.set('rangecoloractive', 'on');
surf1.set('rangecolormax', '350');
surf1.set('rangecolormin', '293.15');
```

12 After the first iteration the copper plate should use the previous solution as the initial condition. Do this by specifying the temperature variable T in the init1 feature:

```
ht.feature('init1').set('T', 1, 'T');
```

13 To change the solver settings so that the initial value points the solution stored in sol1 enter:

```
v1 = model.sol('sol1').feature('v1');
v1.set('initsol', 'sol1');
nd
```

The following steps apply to all iterations.

14 Display the first plot group in a MATLAB figure:

```
figure(1)
mphplot(model, 'pg1', 'rangenum', 1)
hold on
```

IS Add a second figure to display a 3D plot of the temperature distribution for each iteration:

```
figure(2)
subplot(4,2,i)
pg2.setIndex('looplevel','25',0)
mphplot(model, 'pg2');
```

16 Use the function **mphglobal** to extract the value of the simulation stop time of the current iteration. Use this to update the solver start time for the next iteration:

```
time = mphglobal(model, 't', 'solnum', 'end');
model.param.set('t0',time);
```

17 Display the iteration number and close the for-loop:

```
disp(sprintf('End of iteration No.%d',i));
end
```

MODEL M-FILE

Below you find the full script of the model. You can copy it and paste it into a text editor and save it with the ".m" extension. To run the script in MATLAB make sure that the path to the folder containing the script is set in MATLAB, then type the file name without the ".m" extension at the MATLAB prompt.

```
model = mphopen('domain activation llmatlab');
domInd = [2,3,5,4];
ht = model.physics('ht');
for i = 1:8
   k = mod(i,4);
   if k == 0
      k = 4;
   model.component('comp1').selection('sel1').set(domInd(k));
   model.study('std1').run;
   if i==1
      cpt1 = model.result.dataset.create('cpt1', 'CutPoint3D');
      cpt1.set('pointx', '0 L/2 L');
      cpt1.set('pointy', '0 L/2 L');
      cpt1.set('pointz', 'L/10');
      pg1 = model.result.create('pg1', 'PlotGroup1D');
      pg1.set('data', 'cpt1');
```

```
pg1.set('legendpos', 'upperleft');
      ptgr1 = pg1.feature.create('ptgr1', 'PointGraph');
      ptgr1.set('legend', 'on');
      pg2 = model.result.create('pg2', 'PlotGroup3D');
      surf1 = pg2.feature.create('surf1', 'Surface');
      surf1.set('rangecoloractive', 'on');
      surf1.set('rangecolormax', '350');
      surf1.set('rangecolormin', '293.15');
      ht.feature('init1').set('T', 1, 'T');
      v1 = model.sol('sol1').feature('v1');
      v1.set('initsol', 'sol1');
   end
   figure(1)
   mphplot(model, 'pg1', 'rangenum',1)
   hold on
   figure(2)
   subplot(4,2,i)
   pg2.setIndex('looplevel','25',0);
   mphplot(model, 'pg2');
   time = mphglobal(model, 't', 'solnum', 'end');
   model.param.set('t0',time);
   disp(sprintf('End of iteration No.%d',i));
end
```

Modeling Instructions — COMSOL Desktop

Use the COMSOL Desktop to set-up the heat transfer simulation. You can later load this example into MATLAB, using LiveLink™, to continue the model implementation.

From the File menu, choose New.

NEW

In the New window, click Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click **3D**.
- 2 In the Select Physics tree, select Heat Transfer>Heat Transfer in Solids (ht).
- 3 Click Add
- 4 Click Study.

- 5 In the Select Study tree, select General Studies>Time Dependent.
- 6 Click **Done**.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description	
L	50[cm]	0.5 m	Side length of the base	
1	15[cm]	0.15 m	Side length of the plates	
T0	500[K]	500 K	Initial temperature of the plates	
h0	50[W/(m^2*K)]	50 W/(m ² ·K)	Heat transfer coefficient	
ds	10[um]	1E-5 m	Contact gap thickness	
ks	2e-2[W/(m*K)]	0.02 W/(m·K)	Thermal conductivity of air	
period	2[min]	120 s	Applied time per plate	
t0	0	0	Initial time	
dt	5[s]	5 s	Output time step	
tf	t0+period	120 s	Final time	

GEOMETRY I

Block I (blk I)

- I In the Geometry toolbar, click Block.
- 2 In the Settings window for Block, locate the Size and Shape section.
- 3 In the Width text field, type L.
- 4 In the **Depth** text field, type L.
- 5 In the Height text field, type L/10.

Block 2 (blk2)

- I In the Geometry toolbar, click Block.
- 2 In the Settings window for Block, locate the Size and Shape section.
- 3 In the Width text field, type 1.

- 4 In the **Depth** text field, type 1.
- 5 In the Height text field, type 1/10.
- **6** Locate the **Position** section. In the x text field, type L/10.
- 7 In the y text field, type L/10.
- 8 In the z text field, type L/10.

Array I (arrI)

- I In the Geometry toolbar, click \(\sum_{\text{transforms}} \) Transforms and choose Array.
- 2 Select the object blk2 only.
- 3 In the Settings window for Array, locate the Size section.
- 4 In the x size text field, type 2.
- 5 In the y size text field, type 2.
- **6** Locate the **Displacement** section. In the x text field, type L/2.
- 7 In the y text field, type L/2.

Form Union (fin)

In the Model Builder window, right-click Form Union (fin) and choose Build Selected.

DEFINITIONS

Top_plate

- I In the **Definitions** toolbar, click **\(\frac{1}{3} \) Explicit**.
- 2 In the Settings window for Explicit, type Top_plate in the Label text field.
- **3** Select Domain 2 only.

Base blate

- I In the **Definitions** toolbar, click 堶 **Explicit**.
- 2 In the Settings window for Explicit, type Base plate in the Label text field.
- 3 Select Domain 1 only.

Union I

- I In the **Definitions** toolbar, click **Holion**.
- 2 In the Settings window for Union, locate the Input Entities section.
- 3 Under Selections to add, click + Add.
- 4 In the Add dialog box, in the Selections to add list, choose Top_plate and Base_plate.
- 5 Click OK.

Adjacent I

- I In the **Definitions** toolbar, click **\(\) Adjacent**.
- 2 In the Settings window for Adjacent, locate the Input Entities section.
- 3 Under Input selections, click + Add.
- 4 In the Add dialog box, select Top_plate in the Input selections list.
- 5 Click OK.

Box I

- I In the **Definitions** toolbar, click **Box**.
- 2 In the Settings window for Box, locate the Geometric Entity Level section.
- 3 From the Level list, choose Boundary.
- 4 Locate the Box Limits section. In the x minimum text field, type -1e-3.
- 5 In the x maximum text field, type L+1e-3.
- 6 In the y minimum text field, type -1e-3.
- 7 In the y maximum text field, type L+1e-3.
- 8 In the z minimum text field, type L/10-1e-3.
- 9 In the z maximum text field, type L/10+1e-3.
- 10 Locate the Output Entities section. From the Include entity if list, choose Entity inside box.

Intersection I

- I In the **Definitions** toolbar, click intersection.
- 2 In the Settings window for Intersection, locate the Geometric Entity Level section.
- 3 From the Level list, choose Boundary.
- 4 Locate the Input Entities section. Under Selections to intersect, click + Add.
- 5 In the Add dialog box, in the Selections to intersect list, choose Adjacent I and Box I.
- 6 Click OK.

MATERIALS

In the Materials toolbar, click **Browse Materials**.

MATERIAL BROWSER

- I In the Material Browser window, select Built-in>Structural steel in the tree.
- 2 Click Add to Component.
- 3 In the tree, select Built-in>Copper.

- 4 Click Add to Component.
- 5 Click M Done.
- 6 Select Domain 1 only.

HEAT TRANSFER IN SOLIDS (HT)

- I In the Model Builder window, under Component I (compl) click Heat Transfer in Solids (ht).
- 2 In the Settings window for Heat Transfer in Solids, locate the Domain Selection section.
- 3 From the Selection list, choose Union 1.

Initial Values 2

- I In the Physics toolbar, click Domains and choose Initial Values.
- 2 In the Settings window for Initial Values, locate the Domain Selection section.
- 3 From the Selection list, choose Top_plate.
- **4** Locate the **Initial Values** section. In the T text field, type T0.

Heat Flux I

- I In the Physics toolbar, click Boundaries and choose Heat Flux.
- 2 In the Settings window for Heat Flux, locate the Boundary Selection section.
- **3** From the **Selection** list, choose **Box 1**.
- 4 Locate the Heat Flux section. From the Flux type list, choose Convective heat flux.
- **5** In the *h* text field, type h0.

Thin Laver 1

- I In the Physics toolbar, click **Boundaries** and choose Thin Layer.
- 2 In the Settings window for Thin Layer, locate the Boundary Selection section.
- 3 From the Selection list, choose Intersection 1.

MATERIALS

Material 3 (mat3)

- I In the Model Builder window, under Component I (compl) right-click Materials and choose Blank Material.
- 2 In the Settings window for Material, locate the Geometric Entity Selection section.
- 3 From the Geometric entity level list, choose Boundary.
- 4 From the Selection list, choose Box 1.

5 Locate the **Material Contents** section. In the table, enter the following settings:

Property	Variable	Value	Unit	Property group
Thermal conductivity	k_iso ; kii = k_iso, kij = 0	ks	W/(m·K)	Basic
Density	rho	0	kg/m³	Basic
Heat capacity at constant pressure	Ср	0	J/(kg·K)	Basic
Thickness	lth	ds	m	Shell

MESH I

Free Ouad I

- I In the Mesh toolbar, click A Boundary and choose Free Quad.
- 2 In the Settings window for Free Quad, locate the Boundary Selection section.
- 3 From the Selection list, choose Box 1.

Swebt I

In the Mesh toolbar, click A Swept.

Distribution I

- I Right-click Swept I and choose Distribution.
- **2** Select Domains 2–5 only.
- 3 In the Settings window for Distribution, locate the Distribution section.
- 4 In the Number of elements text field, type 2.

Distribution 2

- I In the Model Builder window, right-click Swept I and choose Distribution.
- 2 Select Domain 1 only.
- 3 In the Settings window for Distribution, locate the Distribution section.
- 4 In the Number of elements text field, type 3.

Size

- I In the Model Builder window, under Component I (compl)>Mesh I click Size.
- 2 In the Settings window for Size, locate the Element Size section.
- 3 From the Predefined list, choose Finer.
- 4 Click **Build All**.

STUDYI

Step 1: Time Dependent

- I In the Model Builder window, under Study I click Step I: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.
- 3 In the Output times text field, type range (t0, dt, tf).

SAVE THE MODEL

- I You can now save the model in the COMSOL format, from the File menu select Save.
- **2** Browse to a directory which path is set in MATLAB and enter domain_activation_llmatlab in the File name text field.
- 3 Click Save.