

Nonisothermal Turbulent Flow over a Flat Plate

Introduction

This model of turbulent airflow over a flat plate validates the heat transfer coefficient obtained from the simulation against Nusselt number based correlation functions. The simulation results are in good agreement with experimental measurements.

Model Definition

A coupled heat transfer and airflow problem is solved using the Nonisothermal Flow interface in a 2D geometry:

A plate of length L is heated with a constant heat flux q_w of 10 W/m² and placed in a turbulent airflow with average velocity $U_0 = 0.5$ m/s and temperature $T_0 = 283$ K. At the left boundary of the computational domain, the airflow turbulence is supposed to be fully develop. The airflow is heated over the plate.

TURBULENCE MODELING AND WALL TREATMENT

The turbulent airflow is modeled by the Reynolds-averaged Navier–Stokes (RANS) equations, by using the Turbulent Flow, Low Re k- ε version of the Nonisothermal Flow interface. The **Automatic** option for **Wall treatment** provided by this interface allows using wall functions when the boundary layer mesh is coarse, and to switch to a low Reynolds number formulation when the mesh is fine enough in the boundary layer.

In addition, the **Fully developed** option of the **Inlet** boundary condition is used to set the turbulent inlet at the left boundary of the computational domain.

NUSSELT NUMBER CORRELATIONS

The following Nusselt number correlations are used to validate the numerical results.

In Ref. 1, p. 260, the Nusselt number Nu_x at the position *x* along the heated plate is defined as follows:

$$Nu_x = 0.0296 Re_x^{4/5} Pr^{1/3}$$

where Re_x is the Reynolds number at the position *x* along the heated plate and at film temperature $T_{f,x}$, defined by:

$$\operatorname{Re}_{x} = \frac{\rho(T_{\mathrm{f},x})U_{0}x}{\mu(T_{\mathrm{f},x})}$$

and Pr is the Prandtl number at film temperature $T_{f,x}$, defined by:

$$\Pr = \frac{C_p(T_{f,x})\mu(T_{f,x})}{k(T_{f,x})}$$

where $\rho(T_{f,x})$ (SI unit: kg/m³) denotes the density, $\mu(T_{f,x})$ (SI unit: Pa·s) the viscosity, $C_p(T_{f,x})$ (SI unit: J/(kg·K)) the heat capacity, and $k_f(T_{f,x})$ (SI unit: W/(m·K)) the thermal conductivity, and $T_{f,x} = (T_0 + T_{w,x})/2$, with $T_{w,x}$ the plate surface temperature.

This correlation, initially developed for an isothermal wall, works satisfactorily when the heat flux is uniform, as mentioned in Ref. 1. It is valid for Pr > 0.5.

In Ref. 2, p.327, a slightly different correlation is proposed for the Nusselt number:

$$Nu_r = 0.032 Re_r^{4/5} Pr^{0.43}$$

for flows such that $2 \cdot 10^5 < \text{Re}_x < 5 \cdot 10^6$.

The heat transfer coefficient, h (SI unit: W/(m²·K)), at the surface of the heated plate is then expressed as:

$$h = \frac{k \operatorname{Nu}_x}{x}$$

It is compared to the heat transfer coefficient obtained from numerical simulation:

$$h = \frac{q_{\rm w}}{T_{{\rm w},x} - T_{{\rm b},x}}$$

where $T_{b,x}$ is the bulk temperature at the position x along the heated plate:

$$T_{b,x} = \frac{\int_{0}^{b} u(x,y)T(x,y)dy}{\int_{0}^{b} u(x,y)dy}$$

Results and Discussion

The velocity field and the temperature field over the plate are shown in Figure 1 in Figure 2 respectively.

Figure 1: Velocity field over the plate (x > 5 m).

Figure 2: Temperature field over the plate (x > 5 m).

A numerical convergence study is run, based on the mesh refinement, by using the mesh_coeff parameter. The comparison of the computed heat transfer coefficient with the one obtained from the Nusselt number correlations shows a good approximation over the plate, for mesh_coeff> 0.1 (Figure 3). Further refinement of the mesh does not bring any significant improvement of the numerical solution.

Figure 3: Comparison of the computed heat transfer coefficient with the heat transfer coefficient estimations based on Nusselt number correlations.

References

1. A. Bejan and others, Heat Transfer Handbook, John Wiley & Sons, 2003.

2. J.H. Lienhard IV and J.H. Lienhard V, *A Heat Transfer Textbook*, 4th edition, Phlogiston Press, 2017.

Application Library path: Heat_Transfer_Module/Verification_Examples/flat_plate_nitf_turbulent

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click 🔗 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click **Q** 2D.
- 2 In the Select Physics tree, select Fluid Flow>Nonisothermal Flow>Turbulent Flow> **Turbulent Flow, Low Re k-**ε.
- 3 Click Add.
- 4 Click \bigcirc Study.
- 5 In the Select Study tree, select Preset Studies for Selected Multiphysics> Stationary with Initialization.
- 6 Click **M** Done.

GLOBAL DEFINITIONS

Parameters 1

First, define parameters for the geometry, the inlet conditions, and the heat flux applied on the plate.

I In the Model Builder window, under Global Definitions click Parameters I.

2 In the Settings window for Parameters, locate the Parameters section.

- Value Description Name Expression L 5[m] 5 m Plate length b 0.5[m] 0.5 m Height то 283[K] 283 K Inlet temperature U0 0.5[m/s] 0.5 m/s Inlet velocity qw 10[W/m^2] 10 W/m² Wall heat flux mesh coeff 0.1 0.1 Mesh coefficient for parametric study
- **3** In the table, enter the following settings:

GEOMETRY I

Rectangle 1 (r1)

- I In the **Geometry** toolbar, click **Rectangle**.
- 2 In the Settings window for Rectangle, locate the Size and Shape section.
- 3 In the Width text field, type L*2.

- 4 In the **Height** text field, type b.
- 5 Click to expand the Layers section. In the table, enter the following settings:

Layer name	Thickness (m)
Layer 1	L

- 6 Clear the Layers on bottom check box.
- 7 Select the Layers to the left check box.
- 8 Click 🟢 Build All Objects.

ADD MATERIAL

- I In the Home toolbar, click 🙀 Add Material to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Air.
- 4 Click Add to Component in the window toolbar.
- 5 In the Home toolbar, click 🙀 Add Material to close the Add Material window.

DEFINITIONS

Variables I

- I In the Model Builder window, expand the Component I (compl)>Definitions node.
- 2 Right-click **Definitions** and choose **Variables**.

Define the material properties of the airflow at film conditions for the computation of the Nusselt correlation.

- 3 In the Settings window for Variables, locate the Variables section.
- **4** In the table, enter the following settings:

Name	Expression	Unit	Description
Tb	<pre>integrate(comp1.at2(x,y,u* T),y,0,b)/ integrate(comp1.at2(x,y,u), y,0,b)</pre>	К	Bulk temperature
x_plate	x-L	m	Position along the plate
T_film	0.5*(T+T0)	К	Film temperature
rho_film	<pre>mat1.def.rho(ht.pA,T_film)</pre>	kg/m³	Film density

Name	Expression	Unit	Description
k_film	<pre>mat1.def.k(T_film)</pre>	W/(m·K)	Film thermal conductivity
Cp_film	<pre>mat1.def.Cp(T_film)</pre>	J/(kg·K)	Film heat capacity
mu_film	<pre>mat1.def.eta(T_film)</pre>	Pa·s	Film viscosity
Pr_film	Cp_film*mu_film/k_film		Prandtl number based on film properties
Re_film	<pre>rho_film*U0*x_plate/mu_film</pre>		Reynolds number based on film properties
Nu_x_turb _Bejan	0.0296*Re_film^0.8* Pr_film^(1/3)		Nusselt number (Bejan, 5.131')
Nu_x_turb _Lienhard	0.032*Re_film^0.8* Pr_film^0.43		Nusselt number (Lienhard, 6.115)

TURBULENT FLOW, LOW RE K- ϵ (SPF)

Set the domain and boundary conditions for the definition of the compressible airflow. An **Automatic** wall treatment is set by default in the turbulence model.

- In the Model Builder window, under Component I (compl) click Turbulent Flow, Low Re k-ε (spf).
- 2 In the Settings window for Turbulent Flow, Low Re k- ε , locate the Physical Model section.
- 3 From the Compressibility list, choose Compressible flow (Ma<0.3).

Initial Values 1

- I In the Model Builder window, under Component I (compl)>Turbulent Flow, Low Re k- ϵ (spf) click Initial Values I.
- 2 In the Settings window for Initial Values, locate the Initial Values section.
- **3** Specify the **u** vector as

Inlet 1

- I In the **Physics** toolbar, click **Boundaries** and choose **Inlet**.
- 2 Select Boundary 1 only.
- 3 In the Settings window for Inlet, locate the Boundary Condition section.
- 4 From the list, choose Fully developed flow.
- **5** Locate the **Fully Developed Flow** section. In the U_{av} text field, type U0.

Outlet I

- I In the Physics toolbar, click Boundaries and choose Outlet.
- 2 Select Boundary 7 only.

Symmetry I

I In the Physics toolbar, click — Boundaries and choose Symmetry.

A symmetry boundary condition is applied at the top of the domain instead of an **Outlet** condition to improve numerical convergence.

2 Select Boundaries **3** and **6** only.

HEAT TRANSFER IN FLUIDS (HT)

Set the domain and boundary conditions for the definition of heat transfer in air over the heated plate.

I In the Model Builder window, under Component I (comp1) click Heat Transfer in Fluids (ht).

Inflow I

- I In the **Physics** toolbar, click **Boundaries** and choose **Inflow**.
- 2 Select Boundary 1 only.
- 3 In the Settings window for Inflow, locate the Upstream Properties section.
- **4** In the T_{ustr} text field, type T0.

Outflow I

- I In the **Physics** toolbar, click **Boundaries** and choose **Outflow**.
- 2 Select Boundary 7 only.

Symmetry I

- I In the Physics toolbar, click Boundaries and choose Symmetry.
- 2 Select Boundaries 3 and 6 only.

Heat Flux 1

- I In the Physics toolbar, click Boundaries and choose Heat Flux.
- 2 In the Settings window for Heat Flux, locate the Heat Flux section.
- **3** In the q_0 text field, type qw.
- **4** Select Boundary 5 only.

MESH I

Set manually a mapped mesh for the numerical convergence study, with refinement in the boundary layer over the plate.

- I In the Model Builder window, under Component I (compl) click Mesh I.
- 2 In the Settings window for Mesh, locate the Sequence Type section.
- **3** From the list, choose **User-controlled mesh**.

Size I

- I In the Model Builder window, under Component I (compl)>Mesh I right-click Size I and choose Delete.
- 2 Click Yes to confirm.

Corner Refinement I

- I In the Model Builder window, right-click Corner Refinement I and choose Delete.
- 2 Click Yes to confirm.

Free Triangular 1

- I In the Model Builder window, right-click Free Triangular I and choose Delete.
- 2 Click Yes to confirm.

Boundary Layers 1

- I In the Model Builder window, right-click Boundary Layers I and choose Delete.
- 2 Click Yes to confirm.

Mapped I

In the Mesh toolbar, click Mapped.

Distribution (horizontal)

- I Right-click Mapped I and choose Distribution.
- 2 In the **Settings** window for **Distribution**, type **Distribution** (horizontal) in the **Label** text field.
- **3** Select Boundaries 2, 3, 5, and 6 only.

4 Locate the Distribution section. In the Number of elements text field, type L*100* mesh coeff.

Distribution (vertical)

- I Right-click Distribution (horizontal) and choose Duplicate.
- 2 In the Settings window for Distribution, type Distribution (vertical) in the Label text field.
- 3 Locate the Boundary Selection section. Click Clear Selection.
- 4 Select Boundaries 1, 4, and 7 only.
- **5** Locate the **Distribution** section. From the **Distribution type** list, choose **Predefined**.
- 6 In the Number of elements text field, type 100*mesh_coeff.
- 7 In the **Element ratio** text field, type 8.
- 8 Click 📗 Build All.

MESH I

In the Model Builder window, collapse the Component I (compl)>Mesh I node.

STUDY I

Add a parametric sweep for the numerical convergence study.

Parametric Sweep

- I In the Study toolbar, click **Parametric Sweep**.
- 2 In the Settings window for Parametric Sweep, locate the Study Settings section.
- 3 Click + Add.
- **4** In the table, enter the following settings:

Parameter name	Parameter value list	Parameter unit
mesh_coeff (Mesh coefficient for	0.1 0.25 0.5 0.75	
parametric study)		

5 In the **Study** toolbar, click **= Compute**.

RESULTS

Velocity (spf)

The default plot groups show the **Velocity** and **Temperature** surface plots. Follow the instructions below to plot the distributions only over the plate, for a better visualization of the results, and to reproduce the plots shown in Figure 1 and Figure 2.

Study I/Solution I (4) (soll)

- I In the **Results** toolbar, click **More Datasets** and choose **Solution**.
- 2 In the Settings window for Solution, locate the Solution section.
- 3 From the Solution list, choose Parametric Solutions I (sol3).

Selection

- I In the Results toolbar, click 🖣 Attributes and choose Selection.
- 2 In the Settings window for Selection, locate the Geometric Entity Selection section.
- 3 From the Geometric entity level list, choose Domain.
- **4** Select Domain 2 only.

Velocity (spf)

- I In the Model Builder window, expand the Results>Velocity (spf) node, then click Velocity (spf).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Dataset list, choose Study I/Parametric Solutions I (4) (sol3).
- 4 In the Velocity (spf) toolbar, click **I** Plot.
- **5** Click the **Com Extents** button in the **Graphics** toolbar.

Temperature (ht)

- I In the Model Builder window, click Temperature (ht).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Dataset list, choose Study I/Parametric Solutions I (4) (sol3).
- **4** In the **Temperature (ht)** toolbar, click **O Plot**.
- **5** Click the **F Zoom Extents** button in the **Graphics** toolbar.

Heat Transfer Coefficient

I In the Home toolbar, click 🚛 Add Plot Group and choose ID Plot Group.

Finally, follow the instructions below to compare the heat transfer coefficient obtained from numerical results with the one computed from a Nusselt correlation, and reproduce the plot of Figure 3.

- 2 In the Settings window for ID Plot Group, type Heat Transfer Coefficient in the Label text field.
- 3 Locate the Data section. From the Dataset list, choose Study 1/ Parametric Solutions 1 (3) (sol3).
- 4 Click to expand the Title section. From the Title type list, choose Manual.

- 5 In the Title text area, type Heat transfer coefficient (W/(m².K)).
- 6 Locate the Axis section. Select the Manual axis limits check box.
- 7 In the **x minimum** text field, type 0.
- 8 In the **x maximum** text field, type 5.
- **9** In the **y minimum** text field, type **2**.
- **IO** In the **y maximum** text field, type **6**.

Numerical

- I Right-click Heat Transfer Coefficient and choose Line Graph.
- 2 In the Settings window for Line Graph, type Numerical in the Label text field.
- **3** Select Boundary 5 only.
- 4 Locate the y-Axis Data section. In the Expression text field, type qw/(T-Tb).
- 5 Locate the x-Axis Data section. From the Parameter list, choose Expression.
- 6 In the Expression text field, type x_plate.
- 7 Click to expand the **Legends** section. Select the **Show legends** check box.
- 8 Find the Prefix and suffix subsection. In the Prefix text field, type Numerical, .

Bejan

- I In the Model Builder window, right-click Heat Transfer Coefficient and choose Line Graph.
- 2 In the Settings window for Line Graph, locate the Data section.
- 3 From the Dataset list, choose Study I/Parametric Solutions I (3) (sol3).
- **4** From the **Parameter selection (mesh_coeff)** list, choose **Last**.
- **5** Select Boundary 5 only.
- 6 In the Label text field, type Bejan.
- 7 Locate the y-Axis Data section. In the Expression text field, type ht.kxx* Nu_x_turb_Bejan/x_plate.
- 8 Locate the x-Axis Data section. From the Parameter list, choose Expression.
- 9 In the **Expression** text field, type x_plate.
- **IO** Click to expand the **Coloring and Style** section. Find the **Line style** subsection. From the **Line** list, choose **Dashed**.
- II From the Color list, choose From theme.
- 12 Locate the Legends section. Select the Show legends check box.
- **I3** From the Legends list, choose Manual.

I4 In the table, enter the following settings:

Legends

Bejan's correlation

Lienhard

- I Right-click Heat Transfer Coefficient and choose Line Graph.
- 2 In the Settings window for Line Graph, locate the Data section.
- 3 From the Dataset list, choose Study I/Parametric Solutions I (3) (sol3).
- 4 From the Parameter selection (mesh_coeff) list, choose Last.
- **5** Select Boundary 5 only.
- 6 In the Label text field, type Lienhard.
- 7 Locate the y-Axis Data section. In the Expression text field, type ht.kxx* Nu_x_turb_Lienhard/x_plate.
- 8 Locate the x-Axis Data section. From the Parameter list, choose Expression.
- 9 In the **Expression** text field, type x_plate.
- **10** Locate the **Coloring and Style** section. Find the **Line style** subsection. From the **Line** list, choose **Dotted**.
- II From the Color list, choose From theme.
- 12 Locate the Legends section. Select the Show legends check box.
- **I3** From the Legends list, choose Manual.
- **I4** In the table, enter the following settings:

Legends

Lienhard's correlation

I5 In the **Heat Transfer Coefficient** toolbar, click **O** Plot.