

ID Lithium-Ion Battery Model for the Capacity Fade Tutorial

Introduction

This is a template model containing the physics, geometry and mesh of a lithium-ion battery (without any capacity fade reactions or mechanisms added). The Capacity Fade of a Lithium-Ion Battery application available in the Application Library makes use of this model setup.

The battery cell model is created using the Lithium-Ion Battery interface. A more detailed description on how to set up this type of model can be found in the model example 1D Isothermal Lithium-Ion Battery.

Model Definition

The model is set up for a graphite/NCA battery cell. The materials are available from the Battery Material Library and mainly default settings are selected. The model domains consist of:

- Negative porous electrode: Graphite (MCMB Li_xC₆) active material.
- Separator.
- Positive porous electrode: NCA (LiNi_{0.8}Co_{0.15}Al_{0.05}O₂) active material.
- Electrolyte: 1.0 M LiPF₆ in EC:EMC (3:7 by weight)

The Lithium-Ion Battery interface accounts for:

- Electronic conduction in the electrodes
- Ionic charge transport in the electrodes and electrolyte/separator
- Material transport in the electrolyte, allowing for the introduction of the effects of concentration on ionic conductivity and concentration overpotential
- Material transport within the spherical particles that form the electrodes
- Butler-Volmer electrode kinetics using experimentally measured discharge curves for the equilibrium potential.

Application Library path: Battery_Design_Module/Batteries,_Lithium-Ion/ capacity_fade_seed

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click 🔗 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click ID.
- 2 In the Select Physics tree, select Electrochemistry>Batteries>Lithium-Ion Battery (liion).
- 3 Click Add.
- 4 Click \bigcirc Study.
- 5 In the Select Study tree, select Preset Studies for Selected Physics Interfaces> Time Dependent with Initialization.
- 6 Click M Done.

ROOT

Add the model parameters from a text file.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** Click **b** Load from File.
- 4 Browse to the model's Application Libraries folder and double-click the file capacity_fade_parameters.txt.

GEOMETRY I

Interval I (i1)

- I In the Model Builder window, under Component I (compl) right-click Geometry I and choose Interval.
- 2 In the Settings window for Interval, locate the Interval section.
- 3 From the Specify list, choose Interval lengths.
- **4** In the table, enter the following settings:

Lengths (m)
L_neg
L_sep
L_pos

5 Click 📗 Build All Objects.

MATERIALS

Load the materials from the material library.

ADD MATERIAL

- I In the Home toolbar, click 🙀 Add Material to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Battery>Electrolytes>LiPF6 in 3:7 EC:EMC (Liquid, Li-ion Battery).
- 4 Right-click and choose Add to Component I (compl).
- 5 In the tree, select Battery>Electrodes>Graphite, LixC6 MCMB (Negative, Li-ion Battery).
- 6 Right-click and choose Add to Component I (compl).
- 7 In the tree, select Battery>Electrodes>NCA, LiNi0.8Co0.15Al0.0502 (Positive, Liion Battery).
- 8 Right-click and choose Add to Component I (compl).
- 9 In the Home toolbar, click 🙀 Add Material to close the Add Material window.

DEFINITIONS

Explicit selections are made in the model geometry.

Negative Electrode

- I In the **Definitions** toolbar, click **here Explicit**.
- 2 In the Settings window for Explicit, type Negative Electrode in the Label text field.
- **3** Select Domain 1 only.

Separator

- I In the Definitions toolbar, click 🐂 Explicit.
- 2 In the Settings window for Explicit, type Separator in the Label text field.
- **3** Select Domain 2 only.

Positive Electrode

- I In the **Definitions** toolbar, click http://www.explicit.
- 2 In the Settings window for Explicit, type Positive Electrode in the Label text field.
- **3** Select Domain 3 only.

LITHIUM-ION BATTERY (LIION)

- I In the Model Builder window, under Component I (compl) click Lithium-Ion Battery (liion).
- 2 In the Settings window for Lithium-Ion Battery, locate the Cross-Sectional Area section.
- **3** In the A_c text field, type A_cell.

Porous Electrode 1

- I In the Physics toolbar, click Domains and choose Porous Electrode.
- 2 In the Settings window for Porous Electrode, locate the Domain Selection section.
- **3** From the Selection list, choose Negative Electrode.
- 4 Locate the Electrode Properties section. From the Electrode material list, choose Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat2).
- 5 Locate the **Porous Matrix Properties** section. In the ε_s text field, type epss_neg.
- **6** In the ε_1 text field, type epsl_neg.

Particle Intercalation 1

- I In the Model Builder window, click Particle Intercalation I.
- 2 In the Settings window for Particle Intercalation, locate the Material section.
- 3 From the Particle material list, choose Graphite, LixC6 MCMB (Negative, Liion Battery) (mat2).
- **4** Locate the **Particle Transport Properties** section. In the r_p text field, type rp_neg .
- 5 Click to expand the **Particle Discretization** section. In the $N_{\rm el}$ text field, type 5.
- 6 Select the Fast assembly in particle dimension check box.

Porous Electrode Reaction I

- I In the Model Builder window, click Porous Electrode Reaction I.
- 2 In the Settings window for Porous Electrode Reaction, locate the Material section.
- 3 From the Material list, choose Graphite, LixC6 MCMB (Negative, Li-ion Battery) (mat2).
- 4 Locate the Electrode Kinetics section. In the $i_{0,ref}(T)$ text field, type iOref_neg.

Separator 1

- I In the Physics toolbar, click Domains and choose Separator.
- 2 In the Settings window for Separator, locate the Domain Selection section.
- **3** From the **Selection** list, choose **Separator**.
- **4** Locate the **Porous Matrix Properties** section. In the ε_1 text field, type eps1_sep.

- 5 Locate the Effective Transport Parameter Correction section. From the Electrolyte conductivity list, choose User defined. In the f₁ text field, type eps1_sep^brug1_sep.
- 6 From the Diffusion list, choose User defined. In the f_{Dl} text field, type epsl_sep^brugl_sep.

Porous Electrode 2

- I In the Physics toolbar, click Domains and choose Porous Electrode.
- 2 In the Settings window for Porous Electrode, locate the Domain Selection section.
- 3 From the Selection list, choose Positive Electrode.
- 4 Locate the Electrode Properties section. From the Electrode material list, choose NCA, LiNi0.8Co0.15Al0.0502 (Positive, Li-ion Battery) (mat3).
- **5** Locate the **Porous Matrix Properties** section. In the ε_s text field, type epss_pos.
- **6** In the ε_1 text field, type eps1_pos.
- 7 Locate the Effective Transport Parameter Correction section. From the Electrolyte conductivity list, choose User defined. In the f₁ text field, type liion.epsl^brugl_pos.
- 8 From the Diffusion list, choose User defined. In the f_{Dl} text field, type liion.epsl^brugl_pos.

Particle Intercalation 1

- I In the Model Builder window, click Particle Intercalation I.
- 2 In the Settings window for Particle Intercalation, locate the Material section.
- 3 From the Particle material list, choose NCA, LiNi0.8Co0.15Al0.0502 (Positive, Liion Battery) (mat3).
- **4** Locate the **Particle Transport Properties** section. In the r_p text field, type rp_pos .
- **5** Locate the **Particle Discretization** section. In the $N_{\rm el}$ text field, type **3**.
- 6 Select the Fast assembly in particle dimension check box.

Porous Electrode Reaction I

- I In the Model Builder window, click Porous Electrode Reaction I.
- 2 In the Settings window for Porous Electrode Reaction, locate the Material section.
- 3 From the Material list, choose NCA, LiNi0.8Co0.15Al0.0502 (Positive, Liion Battery) (mat3).
- **4** Locate the **Electrode Kinetics** section. In the $i_{0,ref}(T)$ text field, type iOref_pos.

Initial Cell Charge Distribution I

- I In the Physics toolbar, click 💥 Global and choose Initial Cell Charge Distribution.
- 2 In the Settings window for Initial Cell Charge Distribution, locate the Battery Cell Parameters section.
- **3** In the $E_{\text{cell},0}$ text field, type E_min.
- 4 In the $Q_{\text{cell},0}$ text field, type Q0*1[m^2].
- **5** Locate the **Battery Cell Electrode Balancing** section. In the $f_{\text{cycl,loss}}$ text field, type 0.

Negative Electrode Selection I

- I In the Model Builder window, expand the Initial Cell Charge Distribution I node, then click Negative Electrode Selection I.
- **2** In the **Settings** window for **Negative Electrode Selection**, locate the **Domain Selection** section.
- 3 From the Selection list, choose Negative Electrode.

Positive Electrode Selection I

- I In the Model Builder window, click Positive Electrode Selection I.
- 2 In the Settings window for Positive Electrode Selection, locate the Domain Selection section.
- **3** From the Selection list, choose Positive Electrode.

Electric Ground 1

- I In the Physics toolbar, click Boundaries and choose Electric Ground.
- 2 Select Boundary 1 only.

GLOBAL DEFINITIONS

Default Model Inputs

Set up the temperature value used in the entire model.

- I In the Model Builder window, under Global Definitions click Default Model Inputs.
- 2 In the Settings window for Default Model Inputs, locate the Browse Model Inputs section.
- 3 In the tree, select General>Temperature (K) minput.T.
- Find the Expression for remaining selection subsection. In the Temperature text field, type T.

DEFINITIONS (COMPI)

Piecewise I (pwI)

- I In the Home toolbar, click f(X) Functions and choose Global>Piecewise.
- 2 In the Settings window for Piecewise, type K in the Function name text field.
- 3 Locate the Definition section. From the Smoothing list, choose Continuous function.
- **4** Find the Intervals subsection. Click *b* Load from File.
- 5 Browse to the model's Application Libraries folder and double-click the file capacity_fade_piece_wise.txt.
- 6 Click 💽 Plot.

Variables I

- I In the Model Builder window, right-click Definitions and choose Variables.
- 2 In the Settings window for Variables, locate the Variables section.
- **3** Click **b** Load from File.
- **4** Browse to the model's Application Libraries folder and double-click the file capacity_fade_variables.txt.

STUDY I

Step 2: Time Dependent

- I In the Model Builder window, under Study I click Step 2: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.
- 3 In the **Output times** text field, type range(0,180,(no_cycles+1)*t_cycling/t_factor).