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Introduction

Although linear acoustics does an outstanding job of explaining most acoustical 
phenomena, there are an increasing number of applications that require abandoning the 
small-signal assumption and applying the wave equation for finite-amplitude sound or 
nonlinear acoustics. For example, the effects of finite amplitude propagation can be seen 
in almost every medical use of ultrasound. The use of high intensity ultrasound to induce 
tissue heating for cancer therapy or bleeding control, and the use of shock waves in 
extracorporeal and endoscopic lithotripsy of kidney stones and gallstones provide 
additional examples. Even in the field of diagnostic ultrasound, nonlinear acoustics is of 
interest because the higher harmonics emerged during wave propagation can be exploited 
to produce a better image quality.

The nonlinear phenomenon of wave distortion is both a local effect and a cumulative effect 
due to variation of propagation speed over the waveform, which causes distortion that 
accumulates with propagation distance. The local effect is usually small compared to 
cumulative distortion and can be neglected once the propagation distance becomes much 
greater than a wavelength; see Ref. 1. Therefore, a transient analysis is necessary to model 
the cumulative distortion along with the wave propagation.

This example shows how to model nonlinear propagation of finite-amplitude acoustic 
waves in fluids using the Pressure Acoustics, Transient physics interface of the Acoustics 
Module. The nonlinear effects are taken into account by adding the Nonlinear Acoustics 
(Westervelt) domain feature. Thus the linear wave equation transforms into the Westervelt 
equation which is an approximation of the full 2nd-order wave equation when cumulative 
nonlinear effects dominate local nonlinear effects; see Ref. 1. The current model simulates 
a finite-amplitude wave propagating in 1D along an interval greater than the shock 
formation distance. The computed numerical solution is compared to an analytical 
solution before and after shock formation.

Model Definition

The full Westervelt equation reads

 (1)

where p is the total acoustic pressure, ρ0 and c0 are the density and the speed of sound, 
β = 1 + B/2A is the coefficient of nonlinearity, and δ is the sound diffusivity (see Ref. 2). 
This is the equation solved when the Nonlinear Acoustics (Westervelt) domain feature is 
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added and the General dissipation is selected as Fluid model is selected on the main Transient 
Pressure Acoustics Model node.

For a piston vibrating in a 1D tube with the velocity u(t) = u0sinωt, the so-called shock 
formation distance is

,

There are two classical analytical solutions to Equation 1 available in this case (see Ref. 1). 
Both of them have the form of a series

,  (2)

where σ = x/xsh is the dimensionless spatial coordinate and p0 = ρ0c0u0 is the source 
pressure amplitude.

The first one is known as the Fubini solution and is valid for the distances up to xsh (σ ≤ 1). 
The harmonic amplitudes Bn are defined as

,

with Jn being the Bessel function of the first kind of order n. The second one is known as 
the Fay solution and it is applied for σ ≥ 3.5. The harmonic amplitudes are

with Γ = 2βu0/ωδ is the Goldberg number, which is a measure of the strength of 
nonlinearity relative to that of dissipation (see Ref. 1). A solution provided by Blackstock 
exists in the transition region for 1 ≤ σ ≤ 3.5, but this solution is not considered here.

Table 1 shows the material properties of water and some critical parameters used in the 
simulation. Given those numbers, the shock formation distance for the current model is 
about 0.1 m. The simulation domain is the interval 0 ≤ x ≤ 4.5xsh, as shown in Figure 1. 
A sinusoidal pressure source of amplitude p0 is applied at x = 0, and the Plane Wave 
Radiation boundary condition is applied at x = 4.5xsh to model the propagation of the 
wave without reflections. The diffusivity of sound present in the model is due to viscosity 
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and is defined as δ = 4μ/3ρ0. It corresponds to the acoustic attenuation α = 8.1·10-5 Np/
m.

Figure 1: 1D geometry of the model with the source located at x = 0.

TABLE 1:  MATERIAL PROPERTIES AND SOME CRITICAL MODEL PARAMETERS.

NAME VALUE DESCRIPTION

ρ0 999.6 kg/m3 Density at 20oC and 1 atm

c0 1481.44 m/s Speed of sound at 20oC and 1 atm

μ0 1.0016·10-3 Pa·s Viscosity at 20oC and 1 atm

β 10 Coefficient of nonlinearity

f0 0.1 MHz Source driving frequency

p0 5 MPa Source pressure amplitude

N0 8 Number of harmonics to resolve
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Results and Discussion

The increasing distortion of the waveform when the wave travels away from the acoustic 
source is illustrated in Figure 2. The nonlinear effects are apparent by comparing the 
solution with the linear analytical solution. Initially, the waveform distortion is caused by 
the dependence of propagation speed on the pressure or particle velocity. The peaks of the 
wave travel faster than the troughs, and the waveform gradually turns into a sawtooth-like 
shape clearly seen near the right end of the interval. After the shock formation (the red 
vertical line in Figure 2) the sound dissipation grows. This is due to the intrinsic frequency 
dependency of the attenuation. It is proportional to the frequency squared.

The distortion of the waveform results in the generation of higher harmonic components. 
The further the wave travels, the more energy is transferred to the higher harmonic 
components from the fundamental frequency of the harmonic source signal. This effect is 
demonstrated in the plots of Figure 3 through Figure 5. The plots compare the model 
solution (blue lines) with the analytical solutions (green line) for both waveform and 
frequency spectrum at x = 0.5xsh, xsh, and 3.5xsh. The Fourier transforms used to 
determine the spectrum are applied for the time interval Δt = 5T0 after the wave arrives at 
those locations.

At x = 0.5xsh in Figure 3, the 2nd and the 3rd harmonic components start to show up; at 
x = xsh in Figure 4, more than ten harmonics appear in the frequency spectrum. Their 
contribution grows with the distance as seen in Figure 5 at x = 3.5xsh. These results clearly 
show how the wave deforms when it travels away from the source and how the acoustic 
energy is pumped into higher harmonics from the fundamental frequency.

Note: The Fubini solution is a solution to Equation 1 with no dissipation (δ = 0). 
Therefore, the difference in amplitudes of the numerical and the analytical solution grows 
as x comes closer to xsh (compare plots in Figure 3 and Figure 4).
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Figure 2: Comparison of the nonlinear numerical solution (blue) with the linear analytical 
solution (green): the full propagation domain in the top plot and the area around the shock 
formation distance in the bottom plot. The red vertical line indicates the shock formation 
distance.
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Figure 3: Comparison of model solution (blue) with Fubini nonlinear analytical solution 
(green) at x = 0.5xsh. The top plot shows the pressure profiles and the bottom plot shows the 
frequency spectra.
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Figure 4: Comparison of model solution (blue) with Fubini nonlinear analytical solution 
(green) at x = xsh. The top plot shows the pressure profiles and the bottom plot shows the 
frequency spectra.
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Figure 5: Comparison of model solution (blue) with Fay nonlinear analytical solution (green) 
at x = 3.5xsh. The top plot shows the pressure profiles and the bottom plot shows the frequency 
spectra.
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Notes About the COMSOL Implementation

M E S H  A N D  F I N I T E  E L E M E N T  D I S C R E T I Z A T I O N

The mesh is required to resolves the frequency content of the signal. That means resolving 
higher harmonics along the wave propagation direction. The specified number of 
harmonics to resolve N0, should therefore contribute to the mesh element size. To 
accurately resolve the acoustic pressure, use at least second-order (quadratic) elements. 
Then the mesh element size is defined as dx = c0/(6N0f0).

T I M E  S T E P P I N G

The time stepping depends on the maximum frequency to resolve. It is specified in 
Transient Solver Settings section at the top physics level. In the model it is selected to 
resolve the desired number of harmonics as fmax = N0f0. The Generalized alpha time 
stepping method generated as the default transient solver will automatically use an 
appropriate time step to resolve up to fmax.

Note that when the Nonlinear Acrostics (Westervelt) feature is used the default solver 
should be regenerated if, for example, a linear model was solved previously. This is to 
ensure that a proper solve is set up. The addition of the nonlinear feature will trigger the 
Automatic (Newton) method for solving the boundary value problem.

S H O C K - C A P T U R I N G  S T A B I L I Z A T I O N

Since the model discusses a subject of nonlinear wave propagation beyond the shock-
formation distance, a special treatment is required to resolve the discontinuities of the 
shock. The Nonlinear Acoustics (Westervelt) feature contains a built-in Shock-Capturing 
Stabilization technique available when Stabilization is enabled in the Show view. The 
stabilization is turned off per default as it requires manual tuning.

Whenever the Enable q-Laplacian relaxation is enabled, an extra nonlinear term

is added to the sound diffusivity, δ. This nonlinear term introduces additional dissipation 
that is maximal where the acoustic pressure endures discontinuities, that is, at shocks. The 
parameters κ and q must be tuned so as not to introduce too much or too little dissipation. 
The choice depends on the material properties and the frequency of the input signal. In 
this model, κ = 0.01 and q = 1.35. This simple 1D model can be used to tune the 
stabilization parameters (for other materials and frequencies) for higher dimension models 
as it is relatively fast to solve.
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Application Library path: Acoustics_Module/Nonlinear_Acoustics/
nonlinear_acoustics_westervelt_1d

Modeling Instructions

From the File menu, choose New.

N E W

In the New window, click Model Wizard.

M O D E L  W I Z A R D

1 In the Model Wizard window, click 1D.

2 In the Select Physics tree, select Acoustics>Pressure Acoustics>Pressure Acoustics,

Transient (actd).

3 Click Add.

4 Click Study.

5 In the Select Study tree, select General Studies>Time Dependent.

6 Click Done.

G L O B A L  D E F I N I T I O N S

Load the parameters used in the model from a file. Some of the parameters are presented 
in Table 1.

Parameters 1
1 In the Model Builder window, under Global Definitions click Parameters 1.

2 In the Settings window for Parameters, locate the Parameters section.

3 Click Load from File.

4 Browse to the model’s Application Libraries folder and double-click the file 
nonlinear_acoustics_westervelt_1d_parameters.txt.
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Now, define the amplitudes Bn used in the Fubini and Fay analytical solutions to 
Equation 1.

Analytic 1 (an1)
1 In the Home toolbar, click Functions and choose Global>Analytic.

2 In the Settings window for Analytic, type Pn_fubini in the Function name text field.

3 Locate the Definition section. In the Expression text field, type 1/n*besselj(n, n*
sigma)*sin(n*omega0*(t - sigma*x_sh/c0)).

4 In the Arguments text field, type sigma, t, n.

5 Locate the Units section. In the table, enter the following settings:

6 In the Function text field, type 1.

Analytic 2 (an2)
1 In the Home toolbar, click Functions and choose Global>Analytic.

2 In the Settings window for Analytic, type Pn_fay in the Function name text field.

3 Locate the Definition section. In the Expression text field, type 1/sinh(n*(sigma + 1)/
Gamma)*sin(n*omega0*(t - sigma*x_sh/c0)).

4 In the Arguments text field, type sigma, t, n.

5 Locate the Units section. In the table, enter the following settings:

6 In the Function text field, type 1.

Define variables for the linear and nonlinear analytical solutions to the problem. Use the 
sum() operator with 100 terms to approximate the expression given in Equation 2.

Argument Unit

sigma 1

t s

n 1

Argument Unit

sigma 1

t s

n 1
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D E F I N I T I O N S

Variables 1
1 In the Model Builder window, under Component 1 (comp1) right-click Definitions and 

choose Variables.

2 In the Settings window for Variables, locate the Variables section.

3 In the table, enter the following settings:

G E O M E T R Y  1

Interval 1 (i1)
1 In the Model Builder window, under Component 1 (comp1) right-click Geometry 1 and 

choose Interval.

2 In the Settings window for Interval, locate the Interval section.

3 In the table, enter the following settings:

4 Click Build All Objects.

The geometry should look like the one presented in Figure 1.

P R E S S U R E  A C O U S T I C S ,  T R A N S I E N T  ( A C T D )

1 In the Model Builder window, under Component 1 (comp1) click Pressure Acoustics,

Transient (actd).

2 Locate the Transient Solver and Mesh Settings section. In the Maximum frequency to 

resolve field enter N0*f0. It will give the maximal time step for the Transient Solver 
required to resolve up to N0-harmonics. It will also be used by the mesh.

Name Expression Unit Description

sigma x/x_sh Relative distance

p_fubini 2*P0/sigma*
sum(Pn_fubini(sigma, t, 
n), n, 1, 100)

Pa Fubini solution

p_fay 2*P0/Gamma*
sum(Pn_fay(sigma, t, 
n), n, 1, 100)

Pa Fay solution

p_linear P0*sin(omega0*(t - x/
c0))

Pa Linear solution

Coordinates (m)

0

L
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Transient Pressure Acoustics Model 1
1 In the Model Builder window, under Component 1 (comp1)>Pressure Acoustics,

Transient (actd) click Transient Pressure Acoustics Model 1.

2 In the Settings window for Transient Pressure Acoustics Model, locate the 
Transient Pressure Acoustics Model section.

3 From the Fluid model list, choose General dissipation.

4 From the c list, choose User defined. In the associated text field, type c0.

5 From the ρ list, choose User defined. In the associated text field, type rho0.

6 From the δ list, choose User defined. In the associated text field, type d_diff.

Nonlinear Acoustics (Westervelt) Contributions 1
1 In the Physics toolbar, click Domains and choose 

Nonlinear Acoustics (Westervelt) Contributions.

2 Select Domain 1 only.

3 In the Settings window for Nonlinear Acoustics (Westervelt) Contributions, locate the 
Nonlinear Acoustics (Westervelt) Contributions section.

4 From the Specify list, choose Coefficient of nonlinearity.

5 In the β text field, type beta.

Since the computational domain is larger than the shock formation distance, shocks 
form as the wave passes xsh. Therefore it is required to enable the shock-capturing 
stabilization to resolve the shocks.

6 Click the Show More Options button in the Model Builder toolbar.

7 In the Show More Options dialog box, in the tree, select the check box for the node 
Physics>Stabilization.

8 Click OK.

9 In the Settings window for Nonlinear Acoustics (Westervelt) Contributions, click to 
expand the Shock-Capturing Stabilization section.

10 Select the Enable q-Laplacian relaxation check box.

11 In the q text field, type 1.35.

12 In the κ text field, type 0.01.

Pressure 1
1 In the Physics toolbar, click Boundaries and choose Pressure.

2 Select Boundary 1 only.

3 In the Settings window for Pressure, locate the Pressure section.
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4 In the p0 text field, type P0*sin(omega0*t).

Plane Wave Radiation 1
1 In the Physics toolbar, click Boundaries and choose Plane Wave Radiation.

2 Select Boundary 2 only.

M E S H  1

Proceed and generate the mesh using the Physics-controlled mesh functionality. The 
frequency controlling the maximum element size is per default taken From study, that is, 
from the Maximum frequency to resolve. In general, 5 to 6 second-order elements per 
wavelength are needed to resolve the waves. For more details, see Meshing (Resolving the 
Waves) in the Acoustics Module User’s Guide. In this model, we use 6 elements per 
wavelength; the default Automatic is to have 5.

1 In the Model Builder window, under Component 1 (comp1) click Mesh 1.

2 In the Settings window for Mesh, locate the Pressure Acoustics, Transient (actd) section.

3 From the Number of mesh elements per wavelength list, choose User defined.

4 In the text field, type 6.

5 Click Build All.

S T U D Y  1

Step 1: Time Dependent
1 In the Model Builder window, under Study 1 click Step 1: Time Dependent.

2 In the Settings window for Time Dependent, locate the Study Settings section.

3 In the Output times text field, type range(0,T0/50,Nt*T0).

4 In the Home toolbar, click Compute.

R E S U L T S

Acoustic Pressure (actd)
1 In the Settings window for 1D Plot Group, locate the Data section.

2 From the Time selection list, choose Last.

3 Locate the Plot Settings section. Select the x-axis label check box.

4 Select the y-axis label check box. In the associated text field, type Pressure (Pa).

5 Click to expand the Title section. From the Title type list, choose Manual.

6 In the Title text area, type Total acoustic pressure field (Pa).
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Line Graph 1
1 In the Model Builder window, expand the Acoustic Pressure (actd) node, then click 

Line Graph 1.

2 In the Settings window for Line Graph, click to expand the Legends section.

3 Select the Show legends check box.

4 From the Legends list, choose Manual.

5 In the table, enter the following settings:

Line Graph 2
1 In the Model Builder window, right-click Acoustic Pressure (actd) and choose Line Graph.

2 Select Domain 1 only.

3 In the Settings window for Line Graph, locate the y-Axis Data section.

4 In the Expression text field, type p_linear.

5 Locate the Legends section. Select the Show legends check box.

6 From the Legends list, choose Manual.

7 In the table, enter the following settings:

8 Locate the x-Axis Data section. From the Parameter list, choose Expression.

9 In the Expression text field, type x.

Line Graph 3
1 Right-click Acoustic Pressure (actd) and choose Line Graph.

2 Select Domain 1 only.

3 In the Settings window for Line Graph, locate the x-Axis Data section.

4 From the Parameter list, choose Expression.

5 In the Expression text field, type x_sh.

6 Click to expand the Coloring and Style section. From the Width list, choose 2.

7 Locate the Legends section. Select the Show legends check box.

8 From the Legends list, choose Manual.

Legends

Nonlinear solution

Legends

Linear solution
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9 In the table, enter the following settings:

10 In the Acoustic Pressure (actd) toolbar, click Plot.

The plot should look like the top plot in Figure 2.

You can examine the plot in greater detail by zooming around parts of the plot using 
the Zoom Box tool as shown in the bottom plot in Figure 2.

Create Cut Points to compare the numerical solution with the analytical ones at x = 0.5xsh, 
xsh, and 3.5xsh.

Cut Point - 0.5 Shock
1 In the Results toolbar, click More Datasets and choose Cut Point 1D.

2 In the Settings window for Cut Point 1D, locate the Point Data section.

3 In the X text field, type 0.5*x_sh.

4 In the Label text field, type Cut Point - 0.5 Shock.

Cut Point - 1 Shock
1 In the Results toolbar, click More Datasets and choose Cut Point 1D.

2 In the Settings window for Cut Point 1D, locate the Point Data section.

3 In the X text field, type x_sh.

4 In the Label text field, type Cut Point - 1 Shock.

Cut Point - 3.5 Shock
1 In the Results toolbar, click More Datasets and choose Cut Point 1D.

2 In the Settings window for Cut Point 1D, locate the Point Data section.

3 In the X text field, type 3.5*x_sh.

4 In the Label text field, type Cut Point - 3.5 Shock.

Plot the numerical and the analytical solutions at Cut Points.

Acoustic Pressure at sigma = 0.5
1 In the Results toolbar, click 1D Plot Group.

2 In the Settings window for 1D Plot Group, type Acoustic Pressure at sigma = 0.5 
in the Label text field.

3 Locate the Data section. From the Dataset list, choose Cut Point - 0.5 Shock.

4 From the Time selection list, choose Interpolated.

Legends

Shock formation distance
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5 In the Times (s) text field, type range((Nt - 5)*T0, T0/50, Nt*T0).

6 Locate the Plot Settings section.

7 Select the y-axis label check box. In the associated text field, type Pressure (Pa).

8 Locate the Title section. From the Title type list, choose Manual.

9 In the Title text area, type Comparison to analytical solution at sigma = 0.5.

Point Graph 1
1 Right-click Acoustic Pressure at sigma = 0.5 and choose Point Graph.

2 In the Settings window for Point Graph, click to expand the Legends section.

3 Select the Show legends check box.

4 From the Legends list, choose Manual.

5 In the table, enter the following settings:

Point Graph 2
1 In the Model Builder window, right-click Acoustic Pressure at sigma = 0.5 and choose 

Point Graph.

2 In the Settings window for Point Graph, locate the y-Axis Data section.

3 In the Expression text field, type p_fubini.

4 Locate the Legends section. Select the Show legends check box.

5 From the Legends list, choose Manual.

6 In the table, enter the following settings:

7 In the Acoustic Pressure at sigma = 0.5 toolbar, click Plot.

The plot should look like the top plot in Figure 3.

Acoustic Pressure at sigma = 1
1 In the Home toolbar, click Add Plot Group and choose 1D Plot Group.

2 In the Settings window for 1D Plot Group, type Acoustic Pressure at sigma = 1 in 
the Label text field.

3 Locate the Data section. From the Dataset list, choose Cut Point - 1 Shock.

Legends

Model

Legends

Fubini solution
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4 From the Time selection list, choose Interpolated.

5 In the Times (s) text field, type range((Nt - 5)*T0, T0/50, Nt*T0).

6 Locate the Plot Settings section.

7 Select the y-axis label check box. In the associated text field, type Pressure (Pa).

8 Locate the Title section. From the Title type list, choose Manual.

9 In the Title text area, type Comparison to analytical solution at sigma = 1.

Point Graph 1
1 Right-click Acoustic Pressure at sigma = 1 and choose Point Graph.

2 In the Settings window for Point Graph, locate the Legends section.

3 Select the Show legends check box.

4 From the Legends list, choose Manual.

5 In the table, enter the following settings:

Point Graph 2
1 In the Model Builder window, right-click Acoustic Pressure at sigma = 1 and choose 

Point Graph.

2 In the Settings window for Point Graph, locate the y-Axis Data section.

3 In the Expression text field, type p_fubini.

4 Locate the Legends section. Select the Show legends check box.

5 From the Legends list, choose Manual.

6 In the table, enter the following settings:

7 In the Acoustic Pressure at sigma = 1 toolbar, click Plot.

The plot should look like the top plot in Figure 4.

Acoustic Pressure at sigma = 3.5
1 In the Home toolbar, click Add Plot Group and choose 1D Plot Group.

2 In the Settings window for 1D Plot Group, type Acoustic Pressure at sigma = 3.5 
in the Label text field.

Legends

Model

Legends

Fubini solution
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3 Locate the Data section. From the Dataset list, choose Cut Point - 3.5 Shock.

4 From the Time selection list, choose Interpolated.

5 In the Times (s) text field, type range((Nt - 5)*T0, T0/50, Nt*T0).

6 Locate the Plot Settings section.

7 Select the y-axis label check box. In the associated text field, type Pressure (Pa).

8 Locate the Title section. From the Title type list, choose Manual.

9 In the Title text area, type Comparison to analytical solution at sigma = 3.5.

Point Graph 1
1 Right-click Acoustic Pressure at sigma = 3.5 and choose Point Graph.

2 In the Settings window for Point Graph, locate the Legends section.

3 Select the Show legends check box.

4 From the Legends list, choose Manual.

5 In the table, enter the following settings:

Point Graph 2
1 In the Model Builder window, right-click Acoustic Pressure at sigma = 3.5 and choose 

Point Graph.

2 In the Settings window for Point Graph, locate the y-Axis Data section.

3 In the Expression text field, type p_fay.

4 Locate the Legends section. Select the Show legends check box.

5 From the Legends list, choose Manual.

6 In the table, enter the following settings:

7 In the Acoustic Pressure at sigma = 3.5 toolbar, click Plot.

The plot should look like the top plot in Figure 5.

Acoustic Pressure Spectrum at sigma = 0.5
1 In the Model Builder window, right-click Acoustic Pressure at sigma = 0.5 and choose 

Duplicate.

Legends

Model

Legends

Fay solution
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2 In the Settings window for 1D Plot Group, type Acoustic Pressure Spectrum at 
sigma = 0.5 in the Label text field.

3 Locate the Title section. In the Title text area, type Frequency spectrum at sigma = 
0.5.

4 Click the x-Axis Log Scale button in the Graphics toolbar.

Point Graph 1
1 In the Model Builder window, expand the Acoustic Pressure Spectrum at sigma = 0.5 

node, then click Point Graph 1.

2 In the Settings window for Point Graph, locate the x-Axis Data section.

3 From the Parameter list, choose Discrete Fourier transform.

4 From the Show list, choose Frequency spectrum.

5 From the Scale list, choose Multiply by sampling period.

Point Graph 2
1 In the Model Builder window, click Point Graph 2.

2 In the Settings window for Point Graph, locate the x-Axis Data section.

3 From the Parameter list, choose Discrete Fourier transform.

4 From the Show list, choose Frequency spectrum.

5 From the Scale list, choose Multiply by sampling period.

6 Click to expand the Coloring and Style section. Find the Line style subsection. From the 
Line list, choose None.

7 Find the Line markers subsection. From the Marker list, choose Point.

8 In the Acoustic Pressure Spectrum at sigma = 0.5 toolbar, click Plot.

The plot should look like the bottom plot in Figure 3.

Acoustic Pressure Spectrum at sigma = 1
1 In the Model Builder window, right-click Acoustic Pressure at sigma = 1 and choose 

Duplicate.

2 In the Settings window for 1D Plot Group, type Acoustic Pressure Spectrum at 
sigma = 1 in the Label text field.

3 Locate the Title section. In the Title text area, type Frequency spectrum at sigma = 
1.

4 Click the x-Axis Log Scale button in the Graphics toolbar.
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Point Graph 1
1 In the Model Builder window, expand the Acoustic Pressure Spectrum at sigma = 1 node, 

then click Point Graph 1.

2 In the Settings window for Point Graph, locate the x-Axis Data section.

3 From the Parameter list, choose Discrete Fourier transform.

4 From the Show list, choose Frequency spectrum.

5 From the Scale list, choose Multiply by sampling period.

Point Graph 2
1 In the Model Builder window, click Point Graph 2.

2 In the Settings window for Point Graph, locate the x-Axis Data section.

3 From the Parameter list, choose Discrete Fourier transform.

4 From the Show list, choose Frequency spectrum.

5 From the Scale list, choose Multiply by sampling period.

6 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, 
choose None.

7 Find the Line markers subsection. From the Marker list, choose Point.

8 In the Acoustic Pressure Spectrum at sigma = 1 toolbar, click Plot.

The plot should look like the bottom plot in Figure 4.

Acoustic Pressure Spectrum at sigma = 3.5
1 In the Model Builder window, right-click Acoustic Pressure at sigma = 3.5 and choose 

Duplicate.

2 In the Settings window for 1D Plot Group, type Acoustic Pressure Spectrum at 
sigma = 3.5 in the Label text field.

3 Locate the Title section. In the Title text area, type Frequency spectrum at sigma = 
3.5.

4 Click the x-Axis Log Scale button in the Graphics toolbar.

Point Graph 1
1 In the Model Builder window, expand the Acoustic Pressure Spectrum at sigma = 3.5 

node, then click Point Graph 1.

2 In the Settings window for Point Graph, locate the x-Axis Data section.

3 From the Parameter list, choose Discrete Fourier transform.

4 From the Show list, choose Frequency spectrum.
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5 From the Scale list, choose Multiply by sampling period.

Point Graph 2
1 In the Model Builder window, click Point Graph 2.

2 In the Settings window for Point Graph, locate the x-Axis Data section.

3 From the Parameter list, choose Discrete Fourier transform.

4 From the Show list, choose Frequency spectrum.

5 From the Scale list, choose Multiply by sampling period.

6 Locate the Coloring and Style section. Find the Line style subsection. From the Line list, 
choose None.

7 Find the Line markers subsection. From the Marker list, choose Point.

8 In the Acoustic Pressure Spectrum at sigma = 3.5 toolbar, click Plot.

The plot should look like the bottom plot in Figure 5.
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