

Transient Gaussian Explosion

Introduction

This example introduces some important concepts to have in mind when solving transient problems. In particular, it examines the relationship between the frequency content in the sources driving the model, the mesh resolution, and the time step.

Model Definition

An ellipse with sound-hard walls has the interesting property that an acoustic signal emanating from one of the foci refocuses at the other focal point b/c seconds later, where b (SI unit: m) is the major axis length and c (SI unit: m/s) is the speed of sound.

Inspired by Ref. 1 and Ref. 2, this model involves a Gaussian explosion at one focus of an ellipse to illustrate some properties of time-dependent acoustic problems. The major and minor axis lengths are 10 m and 8 m, respectively. The major axis coincides with the *x*-axis and the foci are located at x = -3 m and x = 3 m. Because of symmetry, the model can be limited to the upper half plane.

Denoting the fluid density by ρ and the speed of sound by *c*, the acoustic pressure field $p(\mathbf{x}, t)$, inside the elliptical chamber is governed by the scalar wave equation

$$\frac{1}{\rho c^2} \frac{\partial^2 p}{\partial t^2} + \nabla \cdot \left(-\frac{1}{\rho} \nabla p \right) = S(\mathbf{x}, t)$$

where the point-source term on the right-hand side is given by

$$S(\mathbf{x},t) = \frac{dg}{dt}(t)\delta^{(2)}(\mathbf{x} - \mathbf{x}_0)$$

2 | TRANSIENT GAUSSIAN EXPLOSION

where $\delta^{(2)}$ is the two-dimensional Dirac delta function. The time dependence of the explosion is determined by the cutoff Gaussian pulse

$$g(t) = \begin{cases} A e^{-\pi^2 f_0^2 (t-\tau)^2} & 0 < t < 2\tau \\ 0 & \text{otherwise} \end{cases}$$

describing the rate of airflow (SI unit: m^2/s) away from the source, located at $\mathbf{x} = \mathbf{x}_0$. The parameter f_0 , which is proportional to the pulse bandwidth, is chosen as $f_0 = 380$ Hz. As the following plots show, by taking $\tau = 1/f_0$ the pulse very closely approximates a full Gaussian, the effect of the cutoff tails being numerically insignificant.

Figure 1: Normalized Gaussian pulse (left) and its derivative (right).

A particularly interesting property of the Gaussian function is that its Fourier transform, depicted in Figure 3, is equally simple (neglect cutoff effects):

$$G(\omega) \equiv \int_{-\infty}^{\infty} g(t) e^{-i\omega t} dt = \frac{2A\sqrt{\pi}}{\omega_0} e^{-\frac{\omega^2}{\omega_0^2} - i\omega t_0}$$

where $\omega_0 = 2\pi f_0$. The magnitude of the Fourier transform falls off quickly for increasing angular frequencies ω . Practically all the energy in the signal is contained in the frequency band $-2\omega_0 < \omega < 2\omega_0$ with most of it concentrated between $-\omega_0$ and ω_0 .

Therefore, when using a forcing function of this type, it is enough to resolve wavelengths corresponding to the angular frequency ω_0 , which in turn corresponds to the frequency f_0 . In this model, the parameter that defined the maximal frequency to resolve is f_{max} , it is set equal to 600 Hz which is slightly higher than f_0 (and will resolve the pulse fully).

In order to well resolve the propagating pulse in space the rule of thumb is to use a minimum of 5 to 6 elements per wavelength (at the maximal frequency), when using quadratic Lagrange elements. The typical mesh size is given by

$$h_{\max} = \frac{\lambda_{\min}}{N} = \frac{c}{f_{\max}N}$$

Where h_{max} is a typical maximal mesh-element size, and N is the number of elements per wavelength required to resolve a harmonic wave with some accuracy. The following discussion uses N = 5. The important point is that there is little to gain in prescribing a forcing function that contains frequencies that the mesh cannot resolve.

In addition to controlling the pulse shape, the mesh resolution imposes a restriction on the internal time steps size taken by the solver. In the transient interfaces of the Acoustics Module, the solver is controlled from the **Transient Solver Settings** section found at the top physics level. The user should enter the **Maximum frequency to resolve** in the model. It is also possible to choose a **Time stepping** (method). Here it is recommended to use the default **Fixed (preferred)** option.

TIME STEPPING EXPLANATION

The logic for the automatic choice made is as follows. The relationship between mesh size and time-step size is closely related to the CFL number (Ref. 3), which is defined as

$$CFL = \frac{c\Delta t}{h}$$

This nondimensional number can be interpreted as the fraction of an element the wave travels in a single time step. A CFL number around 1 would correspond to the same resolution in space and time if the discretization errors were of the same size; however, that is normally not the case.

By default, COMSOL Multiphysics uses the implicit second-order accurate method generalized- α to solve transient acoustics problems. In space, the default is second-order Lagrange elements. Generalized- α introduces some numerical damping of high frequencies but much less than the BDF method.

The temporal discretization errors for generalized- α are larger than the spatial discretization errors when second-order elements are used in space. The limiting step size, where the errors are of roughly the same size, can be found somewhere at CFL < 0.2. You can get away with a longer time step if the forcing does not make full use of the mesh resolution; that is, if high frequencies are absent from the outset.

When the excitation contains all the frequencies the mesh can resolve, there is no point in using an automatic time-step control which can be provided by the time-dependent solver. The tolerances in the automatic error control are difficult to tune when there is weak but important high-frequency content. Instead, you can use your knowledge of the typical mesh size, speed of sound, and CFL number to calculate and prescribe a fixed time step. This is exactly the default behavior when the **Fixed (preferred)** method is chosen in the **Transient Solver Settings** section. The **Free** option corresponds to the automatic time-step control but with some tighter controls of the allowed time-steps. This latter option is still not recommended as the manual option typically yields much better results (and is faster).

The internal time step generated by the **Fixed (preferred)** option and the entered **Maximal frequency to resolve** is set by assuming that the user has generated a mesh that properly resolves the same maximal frequency (minimal wavelength). The following step is generated

$$\Delta t = \frac{h_{\max} \text{CFL}}{c} = \frac{\text{CFL}}{f_{\max} N} \approx \frac{1}{60 f_{\max}}$$

Assuming that N is between 5 and 6 and the CFL number is roughly 0.1. These values give a good margin of safety.

Results and Discussion

Using the properties of air for the medium and selecting a mesh density based on the parameters. The model runs for 0.035 s so that you can study the refocusing at the right-hand focus point at roughly 0.0315 s.

Figure 2: The refocusing occurs at roughly 0.0315 s. An animation gives a better feeling for the process.

For the selected combination of mesh size, pulse shape, and time step, the solution can be shown to be both smooth and accurate. Selecting a smaller value for N leads to oscillations if the CFL number is small enough (choosing a too low frequency to resolve), while selecting a higher CFL number (and consequentially a larger time step) leads to an inaccurate solution.

Figure 3 shows the Fourier transform of the source signal. Plotting the frequency content of the source signal is a good way for selecting the maximal frequency to resolve in the model.

Figure 3: Fourier transform of the source signal.

References

1. B. Yue and M.N. Guddati, "Dispersion-reducing Finite Elements for Transient Acoustics", J. Acoust. Soc. Am., vol. 118, no. 4, pp. 2132–2141, 2005.

2. H.-O. Kreiss, N.A. Peterson, and J. Yström, "Difference Approximations for the for the second order wave equation", *SIAM J. of Num. Analys.*, vol. 40, 1940–1967, 2002.

3. R. Courant, K.O. Friedrichs, and H. Lewy, "On the Partial Difference Equations of Mathematical Physics", *IBM Journal*, vol. 11, pp. 215–234, 1956.

Application Library path: Acoustics_Module/Tutorials,_Pressure_Acoustics/ gaussian_explosion

Modeling Instructions

From the File menu, choose New.

NEW

In the New window, click 🔗 Model Wizard.

MODEL WIZARD

- I In the Model Wizard window, click 🧐 2D.
- 2 In the Select Physics tree, select Acoustics>Pressure Acoustics>Pressure Acoustics, Transient (actd).
- 3 Click Add.
- 4 Click \bigcirc Study.
- 5 In the Select Study tree, select General Studies>Time Dependent.
- 6 Click **M** Done.

GEOMETRY I

Ellipse I (el)

- I In the **Geometry** toolbar, click 🕐 **Ellipse**.
- 2 In the Settings window for Ellipse, locate the Size and Shape section.
- **3** In the **a-semiaxis** text field, type **5**.
- **4** In the **b-semiaxis** text field, type **4**.
- 5 In the Sector angle text field, type 180.

Point I (ptl)

- I In the **Geometry** toolbar, click **Point**.
- 2 In the Settings window for Point, locate the Point section.
- 3 In the x text field, type -3.
- 4 Click 📗 Build All Objects.

5 Click the \leftarrow **Zoom Extents** button in the **Graphics** toolbar.

The completed geometry should look like that in the figure below.

GLOBAL DEFINITIONS

Parameters 1

- I In the Model Builder window, under Global Definitions click Parameters I.
- 2 In the Settings window for Parameters, locate the Parameters section.
- **3** In the table, enter the following settings:

Name	Expression	Value	Description
c_air	343[m/s]	343 m/s	Speed of sound in air
f_max	600[Hz]	600 Hz	Maximum frequency to resolve
Ν	5	5	Elements per wavelength
h_max	c_air/f_max/N	0.11433 m	Typical element size
Α	4[m^2/s]	4 m²/s	Point-source amplitude
fO	380[Hz]	380 Hz	Source frequency bandwidth
t0	1/f0	0.0026316 s	Source pulse half width

ADD MATERIAL

- I In the Home toolbar, click 🙀 Add Material to open the Add Material window.
- 2 Go to the Add Material window.
- 3 In the tree, select Built-in>Air.
- 4 Click Add to Component in the window toolbar.
- 5 In the Home toolbar, click 🙀 Add Material to close the Add Material window.

PRESSURE ACOUSTICS, TRANSIENT (ACTD)

Enter the maximal frequency to be resolved in the model. This value can be assessed from a Fourier analysis of the sources as depicted in Figure 3.

Under the **Transient Solver Settings** section enter the **Maximum frequency to resolve** and set it to f_max.

Point Source 1

- I In the Model Builder window, under Component I (compl) right-click Pressure Acoustics, Transient (actd) and choose Points>Point Source.
- 2 Select Point 2 only.
- 3 In the Settings window for Point Source, locate the Point Source section.
- 4 From the Type list, choose Gaussian pulse.
- 5 In the A text field, type A.
- **6** In the f_0 text field, type **f0**.
- 7 In the t_p text field, type t0.

MESH

Proceed and generate the mesh using the **Physics-controlled mesh** functionality. The frequency controlling the maximum element size is per default taken **From study**. Set the desired **Frequencies** in the study step. In general, 5 to 6 second-order elements per wavelength are needed to resolve the waves. For more details, see *Meshing (Resolving the Waves)* in the *Acoustics Module User's Guide*. In this model we use the default **Automatic** option, which gives 5 elements per wavelength.

STUDY I

- Step 1: Time Dependent
- I In the Model Builder window, under Study I click Step I: Time Dependent.
- 2 In the Settings window for Time Dependent, locate the Study Settings section.

3 In the **Output times** text field, type range(0,0.5e-3,35e-3).

This setting gives you a solution output at every 0.5 ms from t = 0 to t = 35 ms. This should not be confused with the time steps actually taken by the solver. These are set automatically based on the settings entered above. To see where they end up, do the following:

Solution 1 (soll)

- I In the Study toolbar, click **Show Default Solver**.
- 2 In the Model Builder window, expand the Solution I (soll) node, then click Time-Dependent Solver I.
- **3** In the **Settings** window for **Time-Dependent Solver**, click to expand the **Time Stepping** section.

The solver automatically picks up the settings entered at the physics level (in the Transient Solver Settings section) when the default solver is generated or when solve is clicked the first time. It is in general not necessary to edit these settings.

Experienced users maybe find it useful to edit these settings.

MESH I

In the Model Builder window, under Component I (comp1) right-click Mesh I and choose Build All.

STUDY I

In the **Study** toolbar, click **= Compute**.

RESULTS

Acoustic Pressure (actd)

The default plot shows the pressure at the final time. To get a more attractive plot, you can add a height.

Height Expression 1

- I In the Model Builder window, expand the Acoustic Pressure (actd) node.
- 2 Right-click Surface I and choose Height Expression.

You can select different times to look at the wave using the parent Acoustic Pressure (actd) node. At t = 0.0315 s, you are close to the moment when the waves refocus.

Acoustic Pressure (actd)

- I In the Model Builder window, under Results click Acoustic Pressure (actd).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Time (s) list, choose 0.0315.
- **4** In the Acoustic Pressure (actd) toolbar, click **O** Plot.

5 Click the **Comextents** button in the **Graphics** toolbar.

The resulting plot is found in Figure 2. It is illustrative to animate transient problems in general and wave propagation in particular; you can do this by right-clicking the Export node and adding an Animation feature.

It is also possible to plot the field on all sides of the point source by defining a mirror dataset.

Mirror 2D I

- I In the **Results** toolbar, click **More Datasets** and choose **Mirror 2D**. The symmetry line is the *x*-axis.
- 2 In the Settings window for Mirror 2D, locate the Axis Data section.
- **3** From the Axis entry method list, choose Point and direction.
- 4 Find the Direction subsection. In the X text field, type 1.
- **5** In the **Y** text field, type 0.

Acoustic Pressure (actd)

- I In the Model Builder window, under Results click Acoustic Pressure (actd).
- 2 In the Settings window for 2D Plot Group, locate the Data section.
- 3 From the Dataset list, choose Mirror 2D I.
- **4** In the Acoustic Pressure (actd) toolbar, click **2** Plot.
- **5** Click the **Com Extents** button in the **Graphics** toolbar.

6 Click the Transparency button in the Graphics toolbar.

7 Click the Transparency button in the Graphics toolbar to restore the default transparency setting.

The following instructions show how to create Figure 1. These instructions are optional.

Plot the normalized Gaussian and its derivative by plotting two analytic functions.

GLOBAL DEFINITIONS

Analytic I (an I)

- I In the Home toolbar, click f(X) Functions and choose Global>Analytic.
- 2 In the Settings window for Analytic, type g in the Function name text field.
- **3** Locate the **Definition** section. In the **Expression** text field, type exp(-pi^2*(x-1)^2).
- 4 Locate the Plot Parameters section. In the table, enter the following settings:

Argument	Lower limit	Upper limit	Unit
x	0	2	

5 Click 🚮 Create Plot.

RESULTS

Normalized Gaussian

- I In the **Settings** window for **ID Plot Group**, type Normalized Gaussian in the **Label** text field.
- 2 Locate the Plot Settings section.
- 3 Select the x-axis label check box. In the associated text field, type t/r.
- 4 In the y-axis label text field, type exp(-pi^2*(t/r-1)^2).
- 5 In the Normalized Gaussian toolbar, click **O** Plot.

GLOBAL DEFINITIONS

Analytic 2 (an2)

- I In the Home toolbar, click $f \otimes$ Functions and choose Global>Analytic.
- 2 In the Settings window for Analytic, type dg in the Function name text field.
- 3 Locate the Definition section. In the Expression text field, type -2*pi^2*(x-1)*exp(-pi^2*(x-1)^2).
- **4** Locate the **Plot Parameters** section. In the table, enter the following settings:

Argument	Lower limit	Upper limit	Unit
x	0	2	

5 Click 🚮 Create Plot.

RESULTS

Derivative of norm. Gaussian

- I In the **Settings** window for **ID Plot Group**, type Derivative of norm. Gaussian in the **Label** text field.
- 2 Locate the Plot Settings section.
- 3 Select the x-axis label check box. In the associated text field, type t/r.
- **4** In the **y-axis label** text field, type -2*pi^2*(t/r-1)*exp(-pi^2*(t/r-1)^2).
- 5 In the Derivative of norm. Gaussian toolbar, click on Plot.

Finally, create the plot shown in Figure 3 where the frequency content of the source is analyzed.

Fourier Transform of Source

I In the Home toolbar, click 🚛 Add Plot Group and choose ID Plot Group.

2 In the Settings window for ID Plot Group, type Fourier Transform of Source in the Label text field.

Point Graph 1

- I Right-click Fourier Transform of Source and choose Point Graph.
- 2 Select Point 2 only.
- 3 In the Settings window for Point Graph, click Replace Expression in the upper-right corner of the y-Axis Data section. From the menu, choose Component I (compl)> Pressure Acoustics, Transient>Sources>actd.mls1.S Source amplitude N/m².
- 4 Locate the x-Axis Data section. From the Parameter list, choose Discrete Fourier transform.
- 5 From the Show list, choose Frequency spectrum.
- 6 From the Scale list, choose Multiply by sampling period.
- 7 In the Fourier Transform of Source toolbar, click 🗿 Plot.